
Deep Learning

Neural Networks

A “Simple” Classification Problem

How about this classification problem?

Linear model can
not solve the
problem

We need
non-linear models

A Linear Model

Output

Input

● Linear Regression if output is continuous
● Logistic Regression if output is discrete

w1 w2 w3

x1 x2 x3

Linear Regression Logistic Regression

Add Complexity

Output

Hidden Layer

Input

How about now?

Output

Hidden Layer 2

Hidden Layer 1

Input

Make it non-linear

Output

Hidden Layer 2

Hidden Layer 1

Input

Non-Linear Transformation Layer
(a.k.a. Activation Function)

We Usually Don’t
Draw Non-Linear
Transforms

Why Non-linear Activation
● The non-linearities activation function increases the capacity of model

● Without non-linearities, deep neural networks is meaningless: each extra layer

is just one linear transform.

● How to select activation functions?

 You can select an activation function which will approximate the distribution

 faster leading to faster training process.

Forward Computation

Forward Computation

Forward Computation

1. Take f as the non-linear activation

2. Linear Transformation:

3. 2-layer Neural Network:

4. 3-layer Neural Network:

• Neural Network is a model that recursively applies the matrix multiplication and
non-linear activation function.

Backpropagation

Neural networks can be arbitrarily complex

Output

Hidden2

Hidden1

Input

Training done via
BackProp algorithm:
gradient descent in
very non-convex
space

Gradient Descent

Like hiking down a mountain

New
Parameters
Guess

Current
Parameters
Guess

Learning
Rate

Gradient for loss function f
for xn, which computed by
BP algorithm

Credit:https://ml-cheatsheet.readthedocs.i
o/en/latest/gradient_descent.html

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Backpropagation

Backpropagation
Step 1:
Forward pass to compute the network

output and “error”

Step 2:
Backward pass to compute gradients

And update the model weights based on

gradients.

Backpropagation

How to find learning rate?

https://machinelearningmastery.com/understand-the-dynamics-
of-learning-rate-on-deep-learning-neural-networks/

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

A Joke

One variant of Gradient Descent
Algorithm

Training Process
1. Initialize neural network randomly

2. Get output with input data

3. Compare outputs with ground truth in training data

4. Get loss function

5. Update weights with backpropagation and gradient descent algorithm

Iteratively
perform

● Stochastic gradient descent (SGD)
○ Randomly shuffle the data
○ Batch size k: the number of data used for steps 2-5
○ One epoch: the full scan of all the training data. How many times will the weights be

updated in one epoch?
○ Number of Epoch T: the number of iterations to stop training

Types of Gradient Descent Algorithms

1. Batch Gradient Descent batch size = Number of data

2. Mini-batch Gradient Descent 1<batch size< number of data

3. Stochastic Gradient Descent batch size = 1

Batch SGD

Batch SGD: batch size is the number of training data

1 only update model parameters after all training data have been evaluated.

2 stable error gradient

3 need a large memory

4 may lead to a less optimal solution

Mini-Batch SGD

Mini-batch SGD: split the dataset into small batches and take the average of the
gradient over the batch and update the weights

1 more efficient than SGD

2 requires additional hyperparameter i.e. mini-batch size

3 hints on batch size:
 * a power of two that fits the memory requirements of GPU or CPU.
 * small -> a learning process that converges quickly at the cost of noise in the
training
 * large -> a learning process that converges slowly with accurate estimate of
the error gradient

Mini-Batch vs Batch

Except SGD

Different Variants

Momentum, Adam, AdaGrad,
RMSProp

SGD

Non-linear Activation Functions

When Gradient
is zero

Neural Network
1. From Wiki:

• NN is based on a collection of connected units of nodes called artificial neurons which
loosely model the neurons in a biological brain.

2. From another way:
• NN is running several ‘logistic regression’ at the same time (expanding at width and depth

dimensions).

Neural Computation

The fact that a neuron is essentially a logistic regression unit:
 1 performs a dot product with the input and its weights
 2 adds the bias and apply the non-linearity

Neural Network Visualization

Playground

https://developers.google.com/machine-learning/crash-course/DPE/tp-il-neural-net-intro-first

Deep Learning/Deep Neural
Networks

Shallow vs Deep

End-to-End Learning

From Aporras

Representation Matters

Task: Draw a line to separate the green triangles and blue circles.

We want to project the data into the new feature/vector
space that data is linearly separated

Kernel Tricks in SVM

Low-dim, Original Space High-dim, Linearly Separated Space

“Trick” in Deep Learning

Softmax Classifier
(Linear Model)

Low-dim, Original Space

High-dim, Linearly Separated Space

Why Deep Learning

From Andrew Ng

Deep Learning

● Deep learning is a subfield of machine learning

● Most machine learning methods work well because of high-quality feature

engineering/representation learning.

● Deep learning is an end-to-end structure, which supports automatic

representation learning

● Different network structures: CNN, RNN, LSTM, GRU, Attention model, etc

● Optimization in conventional machine learning only focus on model-level to

improve evaluation.

●

●

DL/NN is not New

Why is Deep Learning Powerful Now?

● Feature engineering require high-level expert knowledge, which are easily

over-specified and incomplete.

● Large amounts of training data

● Modern multi-core CPUs/GPUs/TPUs

● Better deep learning ‘tricks’ such as regularization, optimization, transfer

learning etc.

