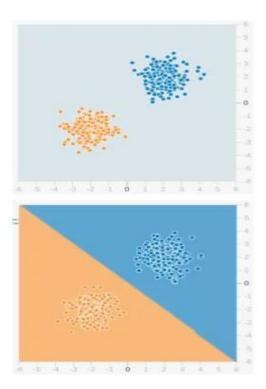
Deep Learning

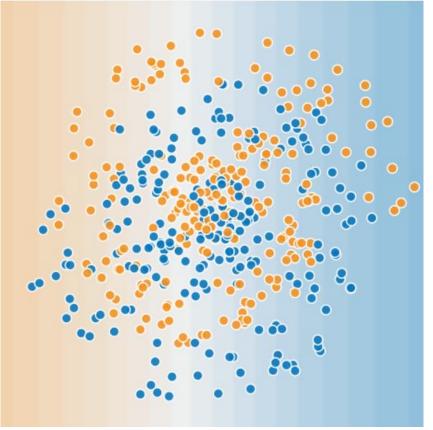
Neural Networks

A "Simple" Classification Problem



How about this classification problem?

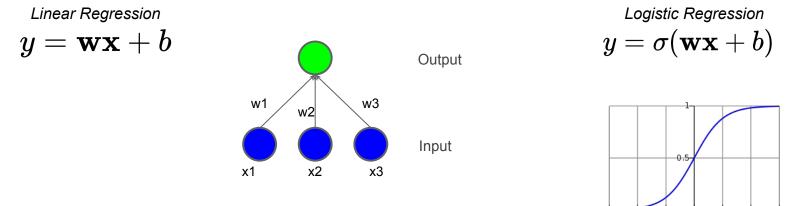
Linear model can not solve the problem



We need non-linear models

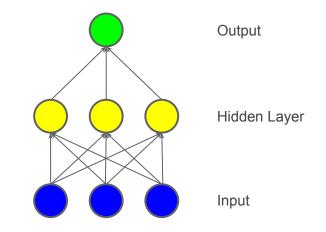
A Linear Model

- Linear Regression if output is continuous
- Logistic Regression if output is discrete

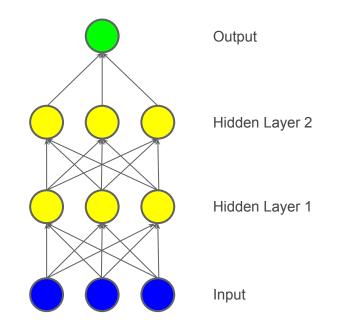


-6 -4 -2 0 2 4 6

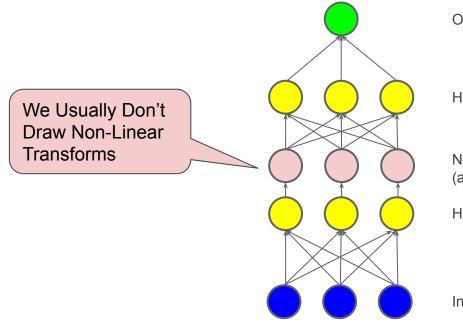
Add Complexity



How about now?



Make it non-linear



Output

Hidden Layer 2

Non-Linear Transformation Layer (a.k.a. Activation Function)

Hidden Layer 1

Input

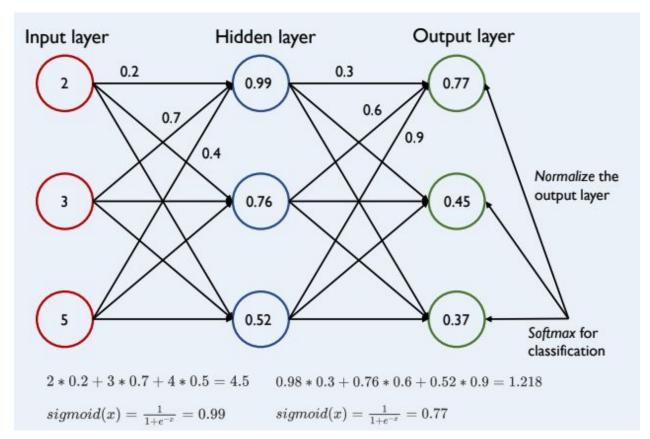
Why Non-linear Activation

- The non-linearities activation function increases the capacity of model
- Without non-linearities, deep neural networks is meaningless: each extra layer is just one linear transform.
- How to select activation functions?

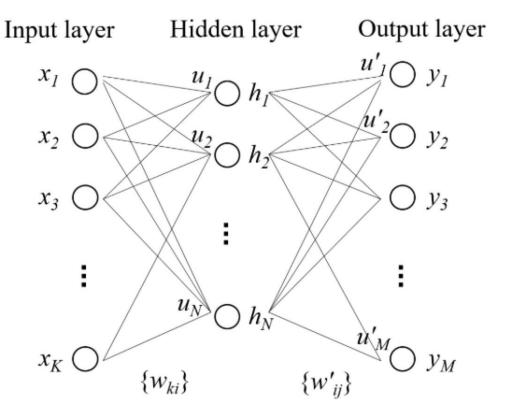
You can select an activation function which will approximate the distribution

faster leading to faster training process.

Forward Computation



Forward Computation



 $u_i = \sum_{k=1}^{K} w_{ki} x_k$ k=1

 $h_i = f(u_i)$

 $u_j' = \sum^N w_{ij}' h_i$ $\overline{i=1}$

 $y_j = f(u'_j)$

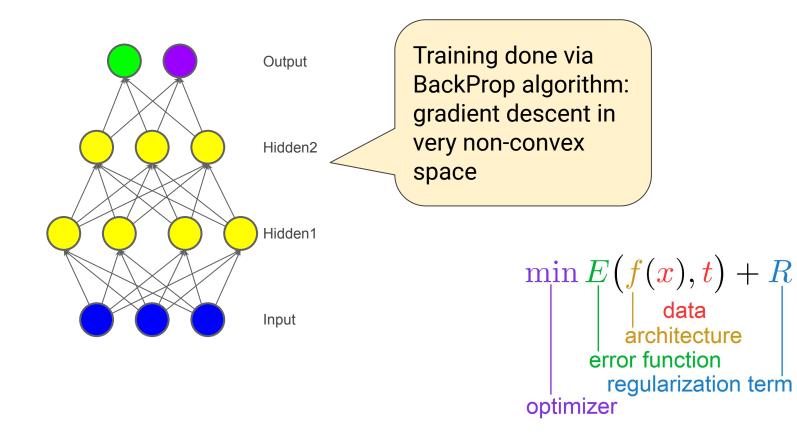
Forward Computation

- 1. Take f as the non-linear activation
- 2. Linear Transformation: $h = W_1 x$
- 3. 2-layer Neural Network: $h = W_2 f(W_1 x)$
- 4. 3-layer Neural Network: $h = W_3 f(W_2 f(W_1 x))$

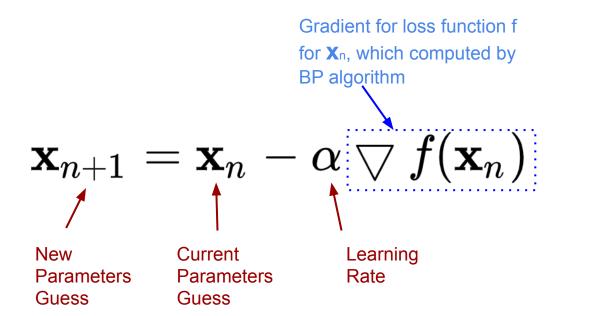
• Neural Network is a model that **recursively** applies the matrix multiplication and non-linear activation function.

Backpropagation

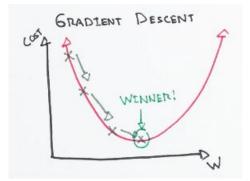
Neural networks can be arbitrarily complex



Gradient Descent

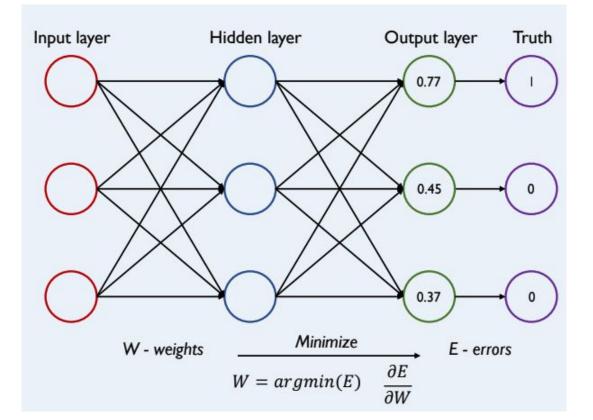


Like hiking down a mountain



Credit:<u>https://ml-cheatsheet.readthedocs.i</u> o/en/latest/gradient_descent.html

Backpropagation



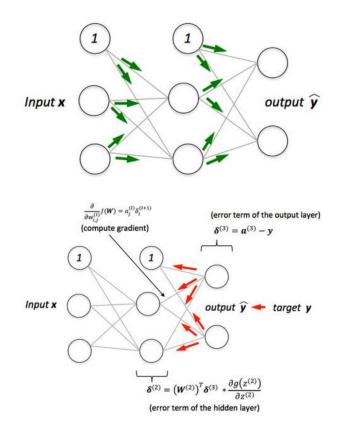
Backpropagation

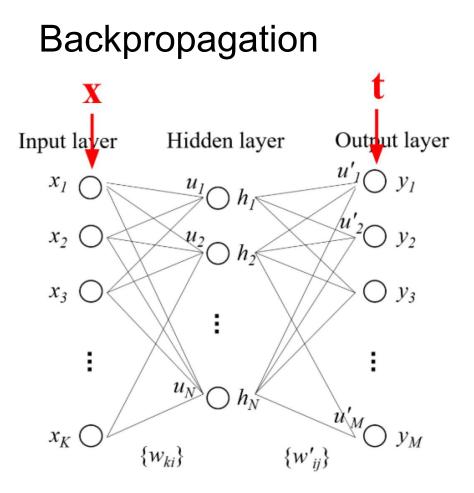
Step 1:

Forward pass to compute the network output and "error"

Step 2:

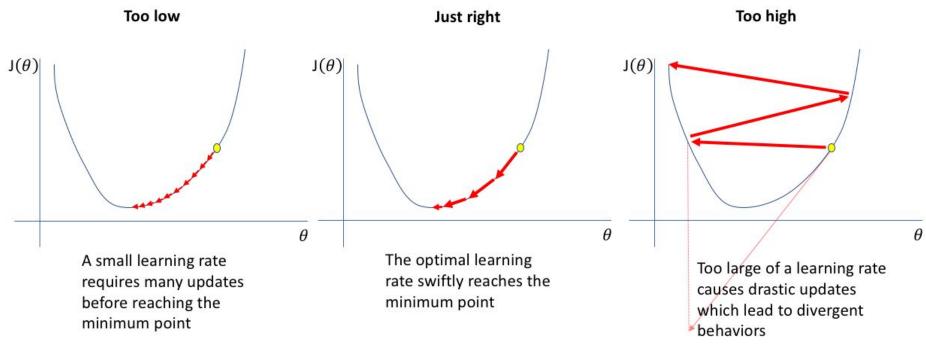
Backward pass to compute gradients And update the model weights based on gradients.





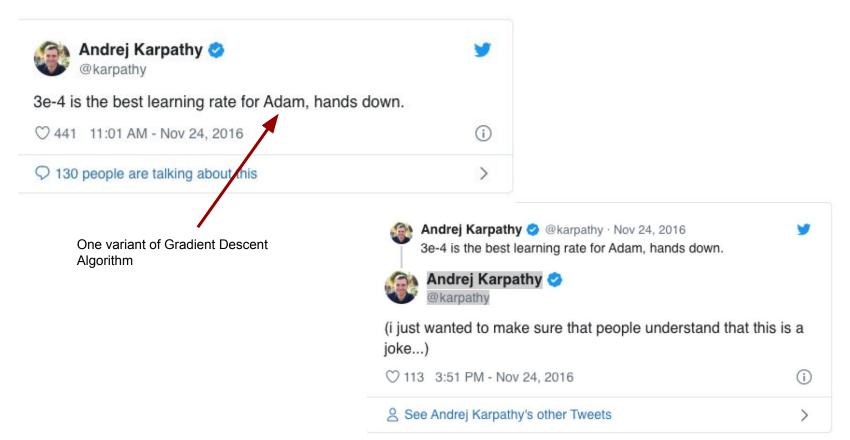
 $E = \frac{1}{2} \sum_{j=1}^{M} (y_j - t_j)^2$ $\frac{\partial E}{\partial y_j} = y_j - t_j$ $\frac{\partial E}{\partial u'_i} = \frac{\partial E}{\partial y_j} \cdot \frac{\partial y_j}{\partial u'_j}$ $\frac{\partial E}{\partial w_{ij}'} = \frac{\partial E}{\partial u_j'} \cdot \frac{\partial u_j'}{\partial w_{ij}'}$ $\frac{\partial E}{\partial h_i} = \sum_{i=1}^M \frac{\partial E}{\partial u'_j} \frac{\partial u'_j}{\partial h_i}$ $\frac{\partial E}{\partial u_i} = \frac{\partial E}{\partial h_i} \cdot \frac{\partial h_i}{\partial u_i}$ $\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial u_i} \cdot \frac{\partial u_i}{\partial w_{ki}}$

How to find learning rate?



https://machinelearningmastery.com/understand-the-dynamicsof-learning-rate-on-deep-learning-neural-networks/

A Joke



Training Process

- 1. Initialize neural network randomly
- 2. Get output with input data
- 3. Compare outputs with ground truth in training data
- 4. Get loss function
- 5. Update weights with backpropagation and gradient descent algorithm

 $\mathbf{x}_{n+1} = \mathbf{x}_n - lpha \bigtriangledown f(\mathbf{x}_n)$

- Stochastic gradient descent (SGD)
 - Randomly shuffle the data
 - Batch size k: the number of data used for steps 2-5
 - One epoch: the full scan of all the training data. How many times will the weights be updated in one epoch?
 - Number of Epoch T: the number of iterations to stop training

Types of Gradient Descent Algorithms

- 1. Batch Gradient Descent
- 2. Mini-batch Gradient Descent
- 3. Stochastic Gradient Descent

batch size = Number of data

1<batch size< number of data

batch size = 1

Batch SGD

Batch SGD: batch size is the number of training data

1 only update model parameters after all training data have been evaluated.

2 stable error gradient

3 need a large memory

4 may lead to a less optimal solution

Mini-Batch SGD

Mini-batch SGD: split the dataset into small batches and take the average of the gradient over the batch and update the weights

1 more efficient than SGD

2 requires additional hyperparameter i.e. mini-batch size

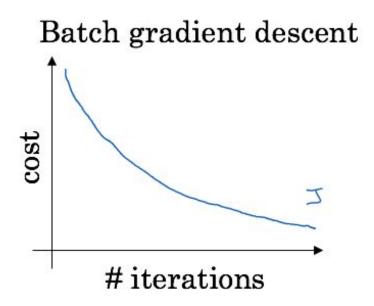
3 hints on batch size:

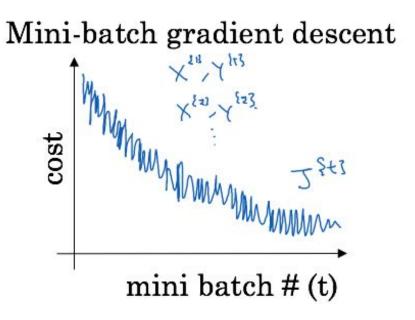
* a power of two that fits the memory requirements of GPU or CPU.

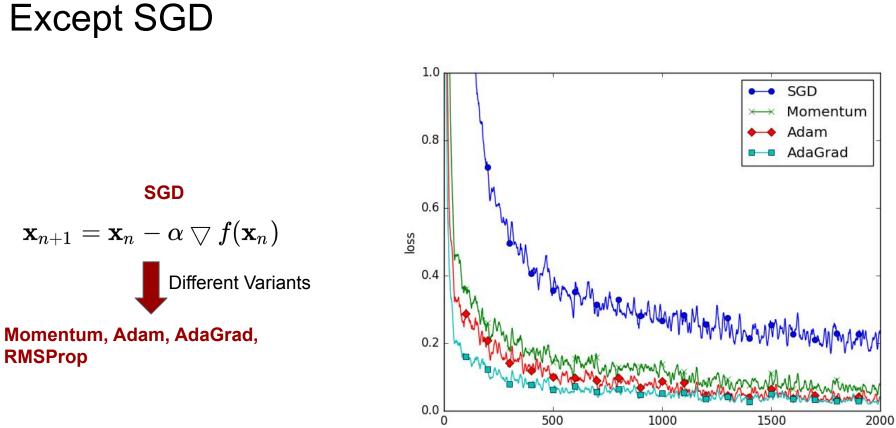
* small -> a learning process that converges quickly at the cost of noise in the training

* large -> a learning process that converges slowly with accurate estimate of the error gradient

Mini-Batch vs Batch

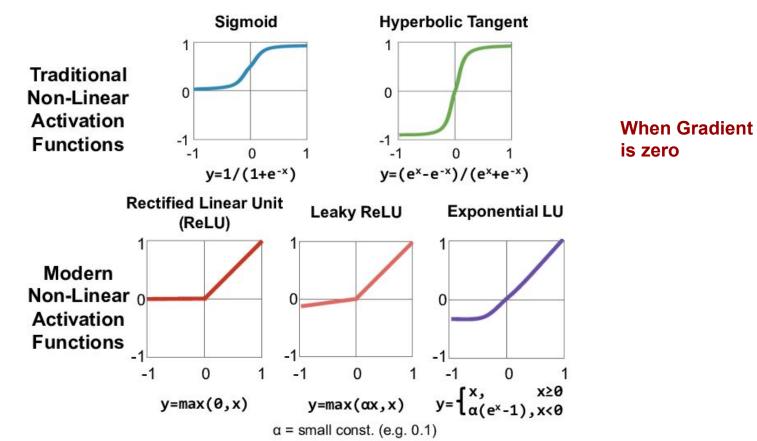






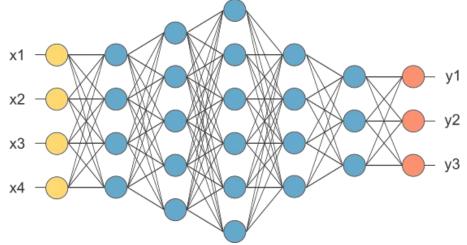
iterations

Non-linear Activation Functions

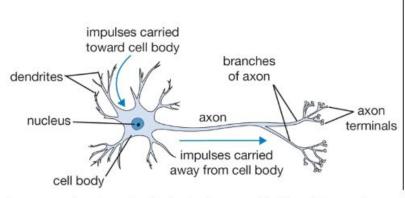


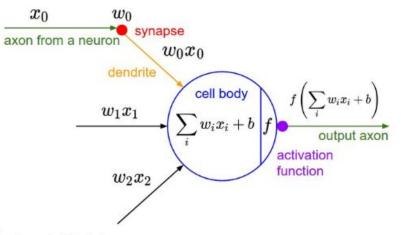
Neural Network

- 1. From Wiki:
 - NN is based on a collection of connected units of nodes called artificial **neurons** which loosely model the neurons in a biological brain.
- 2. From another way:
 - NN is running several 'logistic regression' at the same time (expanding at width and depth dimensions).



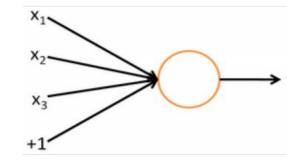
Neural Computation





A cartoon drawing of a biological neuron (left) and its mathematical model (right).

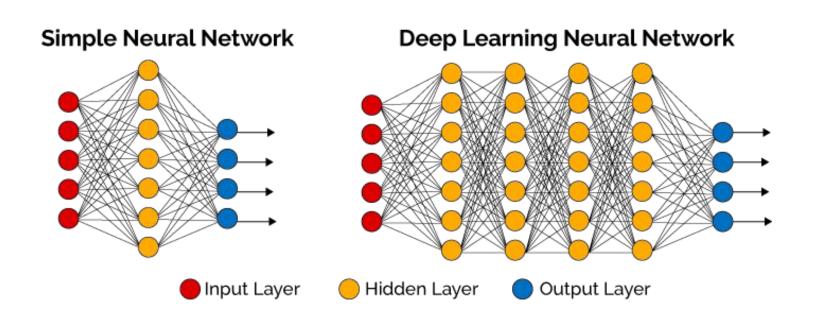
The fact that a neuron is essentially a logistic regression unit: 1 performs a dot product with the input and its weights 2 adds the bias and apply the non-linearity



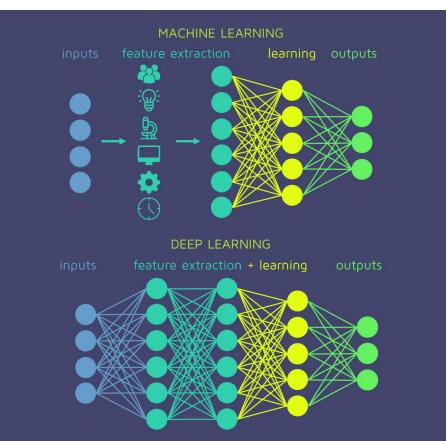
Neural Network Visualization

Deep Learning/Deep Neural Networks

Shallow vs Deep



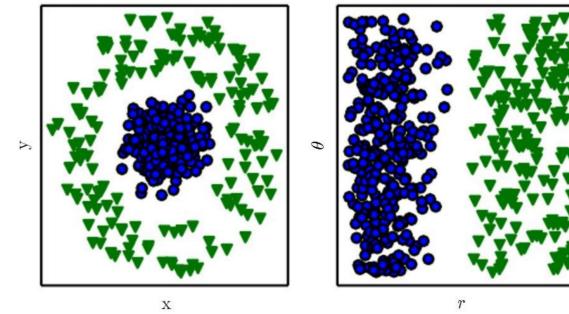
End-to-End Learning



From Aporras

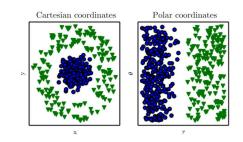
Representation Matters

Cartesian coordinates



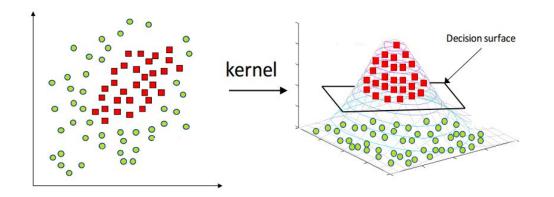
Polar coordinates

Task: Draw a line to separate the green triangles and blue circles.



We want to project the data into the **new** feature/vector space that data is **linearly separated**

Kernel Tricks in SVM



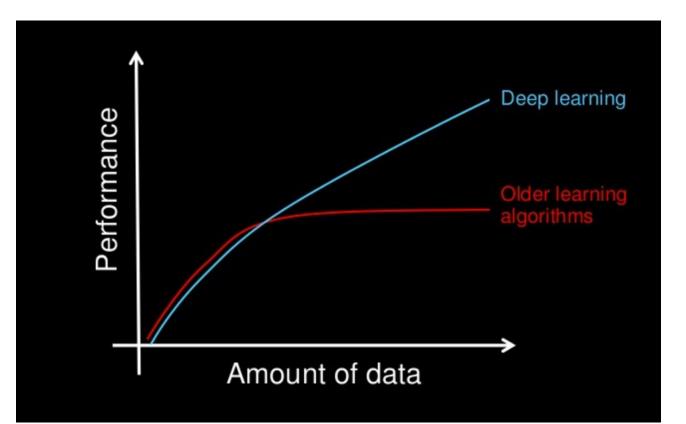
Low-dim, Original Space

High-dim, Linearly Separated Space

"Trick" in Deep Learning Low-dim, Original Space × Input Hidden Hidden Hidden Output layer L1 layer L_2 layer L₃ layer La layer L_5 W W(3 x_1 $x_2 =$ x_3 High-dim, Linearly Separated Space $x_{\rm p}$ 15) W(1) $W^{(2)}$ W(4) a(2) a(3) W⁽³⁾ a(4)

Softmax Classifier (Linear Model)

Why Deep Learning



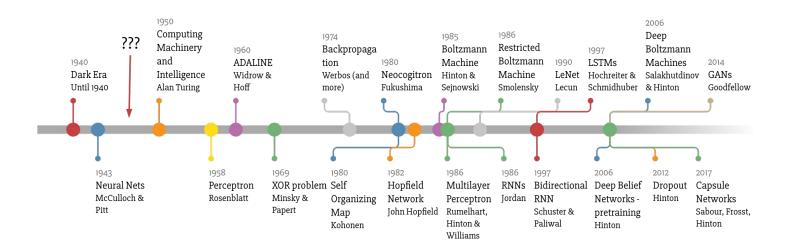
From Andrew Ng

Deep Learning

- Deep learning is a subfield of machine learning
- Most machine learning methods work well because of high-quality feature engineering/representation learning.
- Deep learning is an end-to-end structure, which supports automatic representation learning
- Different network structures: CNN, RNN, LSTM, GRU, Attention model, etc

DL/NN is not New

Deep Learning Timeline



Why is Deep Learning Powerful Now?

- Feature engineering require high-level expert knowledge, which are easily over-specified and incomplete.
- Large amounts of training data
- Modern multi-core CPUs/GPUs/TPUs
- Better deep learning 'tricks' such as regularization, optimization, transfer learning etc.