
Deep Learning



Neural Networks



A “Simple” Classification Problem



How about this classification problem?

Linear model can 
not solve the 
problem

We need 
non-linear models



A Linear Model

Output

Input

● Linear Regression if output is continuous
● Logistic Regression if output is discrete
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Linear Regression Logistic Regression



Add Complexity
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How about now?
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Make it non-linear

Output

Hidden Layer 2

Hidden Layer 1

Input

Non-Linear Transformation Layer 
(a.k.a. Activation Function)

We Usually Don’t 
Draw Non-Linear 
Transforms



Why Non-linear Activation
● The non-linearities activation function increases the capacity of model

● Without non-linearities, deep neural networks is meaningless: each extra layer 

is just one linear transform.

● How to select activation functions?

        You can select an activation function which will approximate the distribution   

        faster  leading to faster training process.



Forward Computation



Forward Computation



Forward Computation

1. Take f as the non-linear activation

2. Linear Transformation:

3. 2-layer Neural Network:

4. 3-layer Neural Network:

        
      
    

• Neural Network is a model that recursively applies the matrix multiplication and 
non-linear activation function. 

 

 

 



Backpropagation



Neural networks can be arbitrarily complex

Output

Hidden2

Hidden1

Input

Training done via 
BackProp algorithm: 
gradient descent in 
very non-convex 
space  



Gradient Descent

Like hiking down a mountain

New 
Parameters 
Guess

Current 
Parameters 
Guess

Learning 
Rate

Gradient for loss function f 
for xn, which computed by 
BP algorithm

Credit:https://ml-cheatsheet.readthedocs.i
o/en/latest/gradient_descent.html

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html


Backpropagation



Backpropagation
Step 1: 
Forward pass to compute the network

output and “error”

Step 2:
Backward pass to compute gradients

And update the model weights based on

gradients.



Backpropagation



How to find learning rate?

https://machinelearningmastery.com/understand-the-dynamics-
of-learning-rate-on-deep-learning-neural-networks/

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/


A Joke

One variant of Gradient Descent 
Algorithm



Training Process
1. Initialize neural network randomly

2. Get output with input data

3. Compare outputs with ground truth in training data

4. Get loss function

5. Update weights with backpropagation and gradient descent algorithm

Iteratively 
perform

● Stochastic gradient descent (SGD)
○ Randomly shuffle the data
○ Batch size k: the number of data used for steps 2-5
○ One epoch: the full scan of all the training data. How many times will the weights be 

updated in one epoch? 
○ Number of Epoch T: the number of iterations to stop training



Types of Gradient Descent Algorithms

1. Batch Gradient Descent                              batch size = Number of data

2. Mini-batch Gradient Descent                      1<batch size< number of data

3. Stochastic Gradient Descent                      batch size = 1



Batch SGD

Batch SGD: batch size is the number of training data

1 only update model parameters after all training data have been evaluated. 

2 stable error gradient

3 need a large memory

4 may lead to a less optimal solution



Mini-Batch SGD

Mini-batch SGD: split the dataset into small batches and take the average of the 
gradient over the batch and update the weights

1 more efficient than SGD

2 requires additional hyperparameter i.e. mini-batch size

3 hints on batch size:
          *  a power of two that fits the memory requirements of GPU or CPU. 
          *  small  -> a learning process that converges quickly at the cost of noise in the 
training
          *  large ->  a learning process that converges slowly with accurate estimate of 
the error gradient



Mini-Batch vs Batch



Except SGD

Different Variants

Momentum, Adam, AdaGrad, 
RMSProp

SGD



Non-linear Activation Functions

When Gradient 
is zero



Neural Network
1. From Wiki:

• NN is based on a collection of connected units of nodes called artificial neurons which  
loosely model the neurons in a biological brain.

 

2. From another way:
•  NN is running several ‘logistic regression’ at the same time (expanding at width and depth 

dimensions).



Neural Computation

The fact that a neuron is essentially a logistic regression unit:
               1 performs a dot product with the input and its weights
               2 adds the bias and apply the non-linearity



Neural Network Visualization

Playground

https://developers.google.com/machine-learning/crash-course/DPE/tp-il-neural-net-intro-first


Deep Learning/Deep Neural 
Networks



Shallow vs Deep 



End-to-End Learning

From Aporras



Representation Matters

Task: Draw a line to separate the green triangles  and blue circles.



We want to project the data into the new feature/vector 
space that data is linearly separated



Kernel Tricks in SVM

Low-dim, Original Space High-dim, Linearly Separated Space



“Trick” in Deep Learning

Softmax Classifier
(Linear Model)

Low-dim, Original Space 

High-dim, Linearly Separated Space



Why Deep Learning

From Andrew Ng



Deep Learning

● Deep learning is a subfield of machine learning

● Most machine learning methods work well because of high-quality feature 

engineering/representation learning.

● Deep learning is an end-to-end structure, which supports automatic 

representation learning

● Different network structures: CNN, RNN, LSTM, GRU, Attention model, etc

● Optimization in conventional machine learning only focus on model-level to 

improve evaluation.

●

●



DL/NN is not New



Why is Deep Learning Powerful Now?

● Feature engineering require high-level expert knowledge, which are easily 

over-specified and incomplete. 

● Large amounts of training data  

● Modern multi-core CPUs/GPUs/TPUs

● Better deep learning ‘tricks’ such as regularization, optimization, transfer 

learning etc.


