Deep Learning

Neural Networks

A “Simple” Classification Problem

How about this classification problem?

- 90 ®
e *° % g
. (9 ® ‘.) ..v >
Linear model can C PN S We need
~4 J .
not solve the o ¢ .') o oo Lo non-linear models
problem e ® S o Hittie’e "o ol
@ @
o ® [) 0.‘ ~or® °®
a ® l;-...;"-. ‘. @
° * 0. 206920 o0 ®
® P08 e 7 o0 ° ®
.(. £y ‘o9 o ™\ .'L..‘ - °
e® & .:.‘ 8 : ..
(-]
® L)] [J
o ¢ S
e © = o e o® ~
® 0 ° >
@ o o>
e o o o0
@

A Linear Model

e Linear Regression if output is continuous
e Logistic Regression if output is discrete

Linear Regression Logistic Regression

y=wx-+b y = o(wx + b)

Output

w1 w3

w2

Input
x1 x2 x3

Add Complexity

Output

Hidden Layer

Input

How about now?

Output

Hidden Layer 2

Hidden Layer 1

Input

Make it non-linear

We Usually Don'’t
Draw Non-Linear
Transforms

Output

Hidden Layer 2

Non-Linear Transformation Layer
(a.k.a. Activation Function)

Hidden Layer 1

Input

Why Non-linear Activation

e The non-linearities activation function increases the capacity of model

e Without non-linearities, deep neural networks is meaningless: each extra layer
is just one linear transform.

e How to select activation functions?
You can select an activation function which will approximate the distribution

faster leading to faster training process.

Forward Computation

Input layer Hidden layer Output layer

Normalize the
output layer

Softmax for
classification

2x02+3x0.7+4%0.5=4.5 0.98 ¥ 0.3 4+ 0.76 * 0.6 + 0.52 # 0.9 = 1.218

sigmoid(z) = 1.:, - = 0.99 sigmoid(z) = = = 0.77

Forward Computation

Input layer Hidden layer Output layer
u'
XJ 111 JO Y1
%ogﬁf

Forward Computation

Take f as the non-linear activation

Linear Transformation: h=Wx
2-layer Neural Network: h =W, f (Wx)
3-layer Neural Network: h = Waf (W, f (W, x))

* Neural Network is a model that recu rsively applies the matrix multiplication and
non-linear activation function.

Backpropagation

Neural networks can be arbitrarily complex

Output Training done via
BackProp algorithm:
gradient descent in

Hidden2 very non-convex
space

/

min E(f(ac), t) + R

data
architecture
error function

regularization term
optimizer

Gradient Descent

Gradient for loss function f

for Xn, which computed by
BP algorithm

Like hiking down a mountain

Xni1 = Xp — 'V f(Xn)’ i B

New Current Learning
Parameters Parameters Rate
Guess Guess

Credit:https://ml-cheatsheet.readthedocs.i
o/en/latest/gradient_descent.html

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Backpropagation

W = argmin(E) ?_l_:’_

ow

Backpropagation

Step 1:
Forward pass to compute the network

output and “error”

Step 2:
Backward pass to compute gradients
And update the model weights based on

gradients.

ORONIN
Input x Q—» Q \ output 'y
O~

a = g gt41)
3w/ (=% (error term of the output layer)

(compute gradient)) =a® -y

@@,@

Input x O O output y <= target y
O O ™ :

ag(z®)
(2) (2)) (3 222
8@ = (w) &) » o)

(error term of the hidden layer)

Backpropagation
X t

Input laier Hidden layer Out*ut layer

!

1 ORT—40 7 O

| M
E=3) (u—t)
J=1
oF .
— =y,
y; § — 5
ou Oy, ou’;
OE OFE (?u;
(9?1:,’-,- N (')u;- 0‘11"-.
OE du
Z 8u ah,
OF o é)E 0}?,[
Ou,- N ()ht (‘)ui
OF o OF Buz
awki B aui au’ki

How to find learning rate?

1(6)

Too low Just right

1(6)

1(6)

Too high

T

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning

rate swiftly reaches the
minimum point

https://machinelearningmastery.com/understand-the-dynamics-

of-learning-rate-on-deep-learning-neural-networks/

Too large of a learning rate
causes drastic updates
which lead to divergent

“behaviors

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

A Joke

A¥3a Andrej Karpathy & w0
y' @karpathy

3e-4 is the best learning rate for Adam, hands down.

Q441 11:01 AM - Nov 24, 2016 ©)
© 130 people are talking abouthis >
4 Andrej Karpathy & @karpathy - Nov 24, 2016 L
One variant of Gradient Descent 3e-4 is the best learning rate for Adam, hands down.
Algorithm
54 Andrej Karpathy &

3 @karpathy

(i just wanted to make sure that people understand that this is a
joke...)

113 3:51 PM - Nov 24, 2016 @

£ See Andrej Karpathy's other Tweets >

Training Process

a >~ L h -~

Initialize neural network randomly
Get output with input data
Compare outputs with ground truth in training data Iteratively

perform
Get loss function

Update weights with backpropagation and gradient descent algorithm
Xpt+1l = Xp — N/ .f(xn)

Stochastic gradient descent (SGD)
o Randomly shuffle the data
o Batch size k: the number of data used for steps 2-5
o One epoch: the full scan of all the training data. How many times will the weights be
updated in one epoch?
o Number of Epoch T: the number of iterations to stop training

Types of Gradient Descent Algorithms

1. Batch Gradient Descent batch size = Number of data
2. Mini-batch Gradient Descent 1<batch size< number of data

3. Stochastic Gradient Descent batch size = 1

Batch SGD

Batch SGD: batch size is the number of training data

1 only update model parameters after all training data have been evaluated.
2 stable error gradient

3 need a large memory

4 may lead to a less optimal solution

Mini-Batch SGD

Mini-batch SGD: split the dataset into small batches and take the average of the
gradient over the batch and update the weights

1 more efficient than SGD
2 requires additional hyperparameter i.e. mini-batch size

3 hints on batch size:

* a power of two that fits the memory requirements of GPU or CPU.

* small -> a learning process that converges quickly at the cost of noise in the
training

* large -> a learning process that converges slowly with accurate estimate of
the error gradient

Mini-Batch vs Batch

Batch gradient descent Mini-batch gradient descent
A A XM/\(M
Xhl/Yifﬁ_
-+ <+ E
4))] 4))]
3 S Eo
=
» >

iterations mini batch # (t)

Except SGD

SGD

Xn+1 = Xp _an(xn)

lDifferent Variants

Momentum, Adam, AdaGrad,
RMSProp

loss

0.0
0

L 4

SGD
Momentum
Adam

AdaGrad

1000
iterations

Non-linear Activation Functions

Sigmoid Hyperbolic Tangent

1 — — 1]
Traditional /
raditiona il

Non-Linear 0
Actlva_tlon 1 | ; When Gradient
Functions 1 0 1 A 0 1 is zero
y=1/(1+ex) y=(e*-eX)/(e*+e™)
Rectified Linear Unit .
(ReLU) Leaky ReLU Exponential LU
1 1 | 7 1
Modern
Non-Linear g] — 0
Activation
Functions ’ 1
-1 0 1 -1 0 1
X220
y=max (@, x) y=max(ox,x) y= {a(e" -1),x<0

a = small const. (e.g. 0.1)

Neural Network

1. From Wiki:
- NN is based on a collection of connected units of nodes called artificial neurons which
loosely model the neurons in a biological brain.

2. From another way:
NN is running several ‘logistic regression’ at the same time (expanding at width and depth

dimensions). v
o/

ek

i g A

o -0 @] N

Hele

@A M K g AN 2
S 7OV o I »‘a’v‘ /

x3 . 4)@ 'Nm(b 4'
,A\ . y3

x4 .N}'{\‘

oS
A

Neural Computation

impulses carried
toward cell body

dendmesﬂgb

nucleus“ﬂ __

b\ impulses carried

away from cell body

branches
of axon

axon

cell body

N2
%S

axon
terminals

L0 Wo
*@ synapse
axon from a neuron

wWoTo

cell body

f (Zw,x, - b)
Z’U),‘.’B,‘ +b :

output axon

activation
function

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

The fact that a neuron is essentially a logistic regression unit:
1 performs a dot product with the input and its weights

2 adds the bias and apply the non-linearity

Neural Network Visualization

Playground

https://developers.google.com/machine-learning/crash-course/DPE/tp-il-neural-net-intro-first

Deep Learning/Deep Neural
Networks

Shallow vs Deep

Simple Neural Network Deep Learning Neural Network

@ Input Layer () Hidden Layer @ Output Layer

End-to-End Learning

MACHINE LEARNING
i] learning outputs

N7

XS

ST

DEEP LEARNING

+ |learning outputs

From Aporras

Representation Matters

Cartesian coordinates Polar coordinates

\A A
vy YW
" g" “w

X /i

Task: Draw a line to separate the green triangles and blue circles.

We want to project the data into the Nnew feature/vector
space that data is linearly separated

Kernel Tricks in SVM

A
© o
o ® o : Decision surface
4 © smg® o i.'.
) 4 |
" --. . k | - I T1
e ®© 0 .-- erne -.' B
(] =] EE o "
o " m g m o —_— U g ant
o "mm nm Y]
© "ogEg_E Og
o o R ° (¢} [B
© (&) o Qe
o e © @ o \\QOO OOOOO OO OO 600
° o © 0 ® o0 © 08
o ® oo “&088 060 o%o——"
o 00 © o ’,/4:'/
oo e =0 00—

Low-dim, Original Space High-dim, Linearly Separated Space

“TriCk” |n Deep Learnlng Low-dim, Original Space

Input Hidden Hidden Hidden Output
layer L, layer L, layer Ly layer Ly layer Ly

e} Q%Q 299

High-dim, Linearly Separated Space

Softmax Classifier
(Linear Model)

Why Deep Learning

Deep learning

@
O
-
S
S
—
O

‘€
@

o

Amount of data
From Andrew Ng

Deep Learning

e Deep learning is a subfield of machine learning

e Most machine learning methods work well because of high-quality feature
engineering/representation learning.

e Deep learning is an end-to-end structure, which supports automatic
representation learning

e Different network structures: CNN, RNN, LSTM, GRU, Attention model, etc

DL/NN is not New

??
1940
Dark Era
Until 1940
1943
Neural Nets
McCulloch &
Pitt

Made by Favio Vézquez

1950
Computing
Machinery
and
Intelligence
Alan Turing

Deep Learning Timeline

2006
1974 1985 1986 Deep
1960 Backpropaga Boltzmann Restricted 1997 Boltzmann
ADALINE tion 1980 Machine ~ Boltzmann 1990 LSTMs Machines 2014
Widrow & Werbos (and Neocogitron Hinton & Machine LeNet Hochreiter & Salakhutdinov GANs
Hoff more) Fukushima Sejnowski Smolensky Lecun Schmidhuber & Hinton Goodfellow
. " ’
el
| S S S S —
1958 1969 1980 1982 1986 1986 1997 2006 2012 2017
Perceptron ~ XOR problem Self Hopfield Multilayer RNNs Bidirectional Deep Belief Dropout Capsule
Rosenblatt Minsky & Organizing Network Perceptron Jordan RNN Networks- Hinton Networks
Papert Map John Hopfield Rumelhart, Schuster & pretraining Sabour, Frosst,
Kohonen Hinton & Paliwal Hinton Hinton
Williams

Why is Deep Learning Powerful Now?

e Feature engineering require high-level expert knowledge, which are easily
over-specified and incomplete.

e Large amounts of training data

e Modern multi-core CPUs/GPUs/TPUs

e Better deep learning ‘tricks’ such as regularization, optimization, transfer

learning etc.

