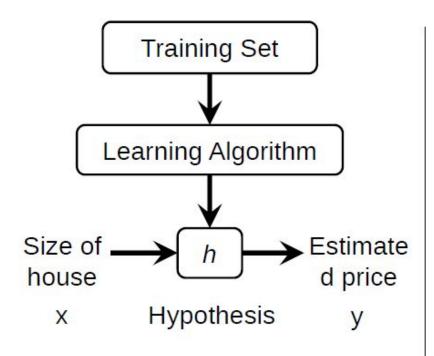
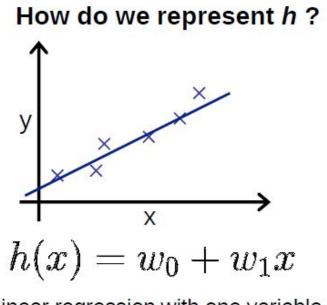
Text Classification II

Logistic Regression

Quick Review on Linear Regression

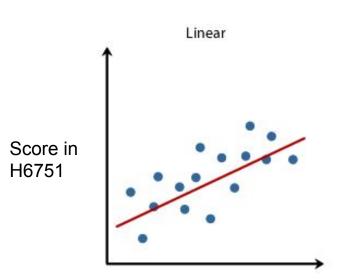




Linear regression with one variable. "Univariate Linear Regression"

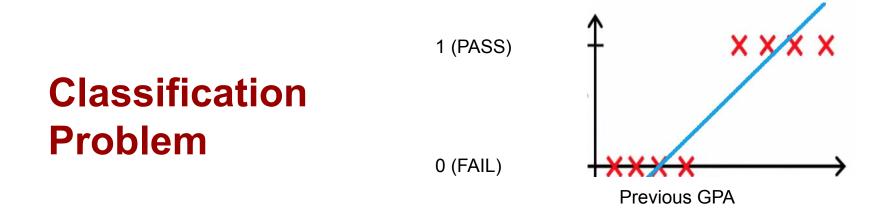
Continuous Target

- Let us build an auto-grade algorithms
- Input feature is one scalar: your previous GPA
- Target value is: your score in H6751



Discrete Target

- We only want to predict whether you can pass H6751
- Input feature is one scalar: your previous GPA
- Target value is: a binary value (1: pass, 0: fail)



Classification

Binary Classification

.

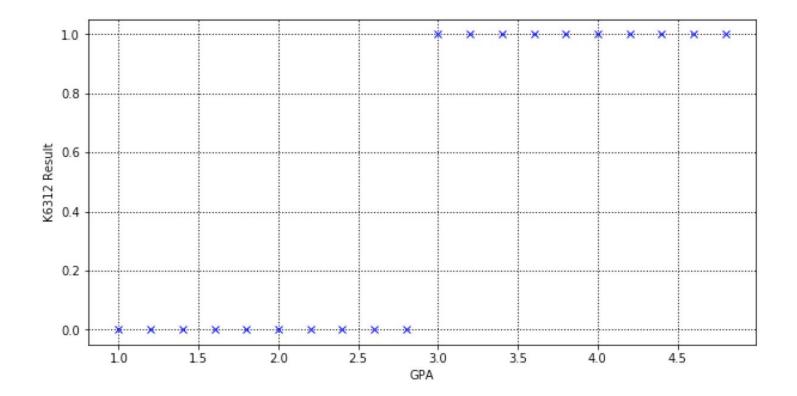
- Email: spam or not spam
- Online Transaction: fraud or not fraud

$$y = \begin{cases} -1 & \text{Negtive class, e. g. not spam and not fraud} \\ 1 & \text{Positive class, e. g. spam and fraud} \end{cases}$$

Machine Learning is to learn a function from data such that

$$f: X \to Y$$

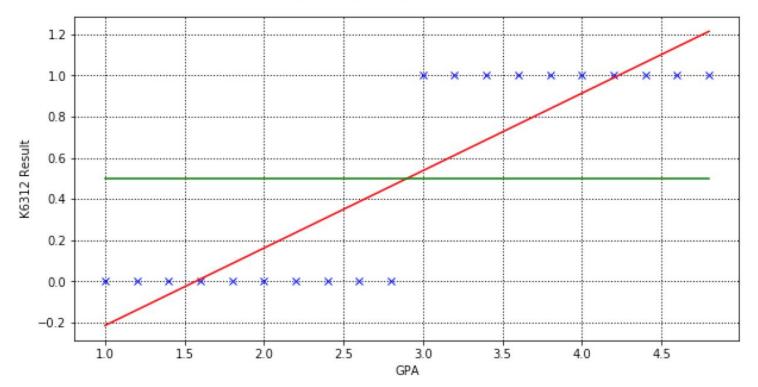
Can we use linear regression for classification?



After fitting,

print(lin_regression.coef_)
print(lin_regression.intercept_)

[0.37593985] -0.5902255639097744



Output Value is continuous

- For classification problem, we want the output value to be probabilistic, which should be in range(0, 1).
- However, the output of linear regression is unbounded

print(lin_regression.coef_)
print(lin_regression.intercept_)

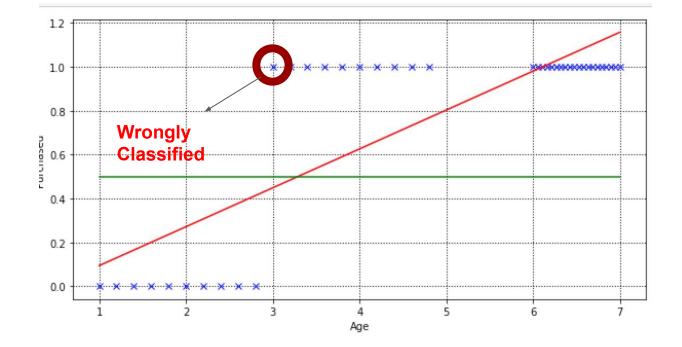
[0.37593985] -0.5902255639097744 y=0.3759*x-0.59

When x = 5, y=1.289When x = 4.6, y=1.038When x = 1.2, y=-0.13

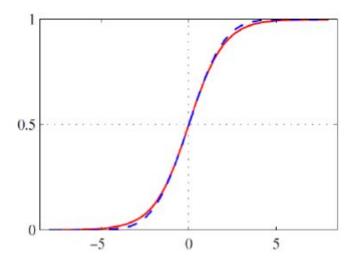
What we want is that the proba. Scores of the first two cases is close to 1 and the last case is close to 0.

Imbalanced data

• Let us add 20 students whose GPA are in the range(6, 7) and pass the H6751



Logistic Function



 $\sigma(t)=rac{1}{1+e^{-t}}=rac{e^t}{1+e^t}$

t : (-infinite, +infinite) $\sigma(t)$: probabilistic score from 0 to 1

Linear
Regression
$$\sigma(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t}$$
Logistic
Regression $f(x) = w * x + b$ $f(x) = \frac{1}{1+e^{-(w * x + b)}}$

Logistic Regression

Logistic Regression

- Uses logistic function to model binary target
- Model the distribution of p(y = 1|x) given x
- The exact parametric formulation is:

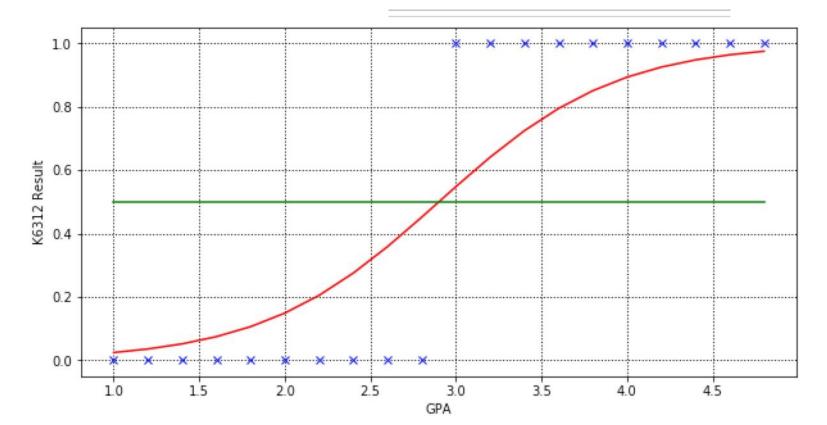
$$egin{aligned} p(y=1|x) &= rac{1}{1+e^{-(wx+b)}} &= rac{e^{(wx+b)}}{1+e^{(wx+b)}} \ p(y=0|x) &= 1-rac{1}{1+e^{-(wx+b)}} &= rac{1}{1+e^{(wx+b)}} \end{aligned}$$

• Let us check the performance of Logistic Regression on H6751 auto-grade system

After fitting

print(log_regression.coef_)
print(log_regression.intercept_)

[[1.93582432]] [-5.61388646]



Output Value is Prob.score

print(log_regression.coef_)
print(log_regression.intercept_)

[[1.93582432]] [-5.61388646]

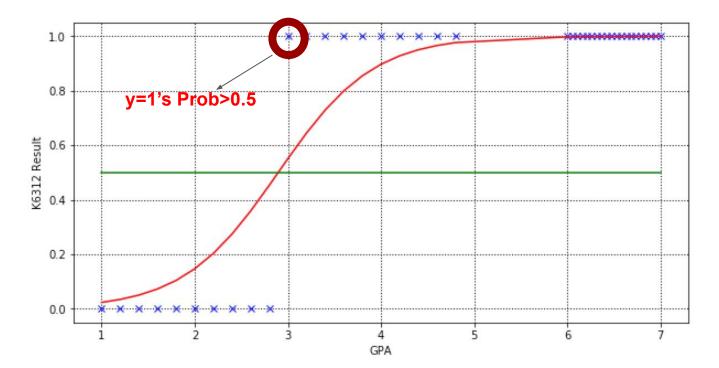
 $p(y=1|x)=rac{1}{1+e^{-(wx+b)}}=rac{e^{(wx+b)}}{1+e^{(wx+b)}}$

p(y=1|x)=e^t/(1+e^t) p(y=0|x)=1/(1+e^t) t=1.93*x-5.6

prob(y=0) prob(y=1)

Imbalanced data

• Let us add 20 students whose GPA are in the range(6, 7) and pass the H6751



How to learn parameters

- Fitting the data
- In the python code, it is simple

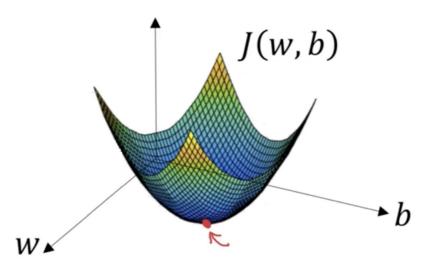
Examples

```
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(random_state=0) fit(X, y)
```

• Actually, it is an optimization problem (in math perspective)

Optimization

- Fitting the data -> define a loss function, which reflects the fitness of the different model parameters over the parameters
- Optimization is the process to search the minimum point



Entropy Loss

- For each single data point: $p(y=1|x) = rac{1}{1+e^{-(wx+b)}} = rac{e^{(wx+b)}}{1+e^{(wx+b)}}$ Loss(y, ilde y) = -[ylog ilde y + (1-y)log(1- ilde y)]
- To understand this loss function, compute the loss values for these following cases:
 - \circ If y=1, predict prob of y=1 is 0.9,
 - \circ If y=0, predict prob of y=1 is 0.2,
 - \circ If y=1, predict prob of y=1 is 0.2,
 - If y=0, predict prob of y=1 is 0.9,

Whether the model prediction is good nor not?

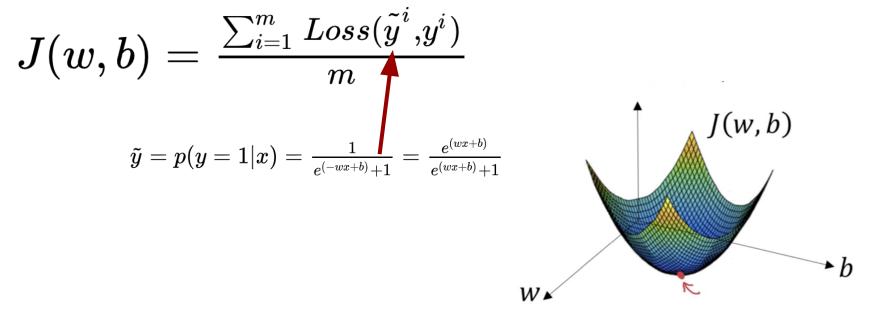
Entropy Loss

- For each single data point: $p(y=1|x)=rac{1}{1+e^{-(wx+b)}}=rac{e^{(wx+b)}}{1+e^{(wx+b)}}$ Loss(y, ilde y)=-[ylog ilde y+(1-y)log(1- ilde y)]
- To understand this loss function, compute the loss values for these following cases:

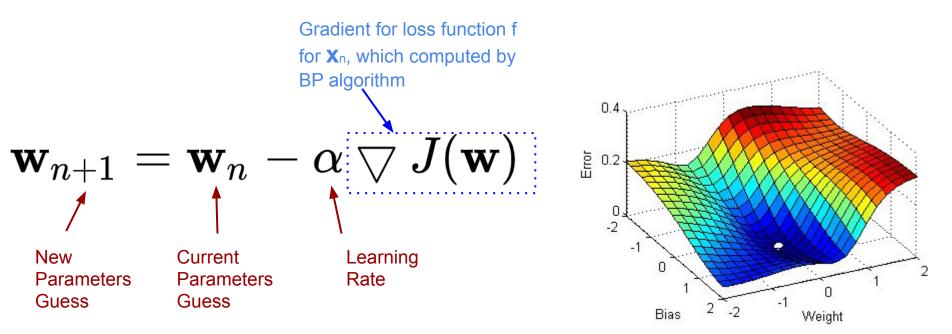
0	If y=1, predict prob of y=1 is 0.9,	-log0.9=0.1	Good Fitness, Low
0	If y=0, predict prob of y=1 is 0.2,	-log0.8=0.22	Loss
	If y=1, predict prob of y=1 is 0.2,	-log0.2=1.6	Bad Fitness, High
	If y=0, predict prob of y=1 is 0.9,	-log0.1=2.3	Loss

Optimization is to reduce Loss

• For training data of m data points (x, y), the loss is the function of model parameters



Gradient Descent Algorithm



Like hiking down a mountain

Decision boundary of Logistic Regression

• Decision is made by comparing the probabilities

$$p(y = 1 | \mathbf{x}) > p(y = -1 | \mathbf{x}) \Leftrightarrow \frac{p(y = 1 | \mathbf{x})}{p(y = -1 | \mathbf{x})} > 1$$

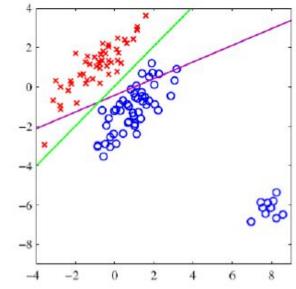
• Take the logarithm

$$\ln \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} = \mathbf{w}^{\top}\mathbf{x} + b \to \mathbf{w}^{\top}\mathbf{x}$$

• Decision boundary is linear

$$\mathbf{w}^{\top}\mathbf{x} + b = 0$$

$$y = \begin{cases} +1 & \text{if } \mathbf{w}^{\top}\mathbf{x} + b > 0\\ -1 & \text{otherwise} \end{cases}$$
* The threshold is tunable



We can have multiple w

- For simplicity, we only have one feature x therefore only one w and bias b in the example.
- In practice, each data sample is represented by a n-dimensional vector and the logistic regression model has n weights and one bias b.
- For text mining, the input vectors will be BoW vectors.

output: $\sigma(-1.2^{*}(10) + 1.4^{*}(5) + 2.2^{*}(3) + 0.6^{*}(5) + 0.2)$

Evaluation

How to do we evaluate the model performance?

i.e., how to quantify the matching degree between the ground truth y and the predicted labels y[^].

Evaluation of Classification Problems

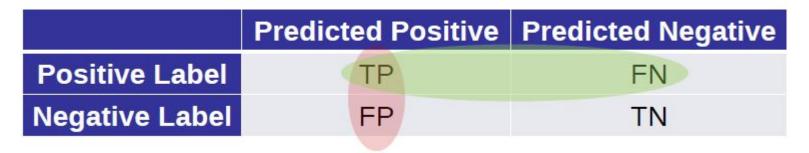
Confusion Matrix

+	Predicted Positive	Predicted Negative
Positive Label	TP True Positive	FN False Negative
Negative Label	FP False Positive	TN True Negative

• Accuracy: How accurate is the prediction?

Correct Prediction	TP + TN
Total #-of-Samples	$= \frac{1}{\text{TP} + \text{FP} + \text{TN} + \text{FN}}$

Precision and Recall



• Precision =
$$\frac{TP}{TP + FP}$$

- how accurate the positive prediction is?

• Recall =
$$\frac{TP}{TP + FN}$$

– how many positive cases are detected?

Example: H6751 Auto-grade

	Predicted Positive	Predicted Negative
Positive Label	27	4
Negative Label	1	18

- Accuracy = (27 + 18) / (27 + 1 + 18 + 4) = 0.9
- Precision = 27 / (27 + 1) = 0.964
- Recall = 27/ (27 + 4) = 0.871

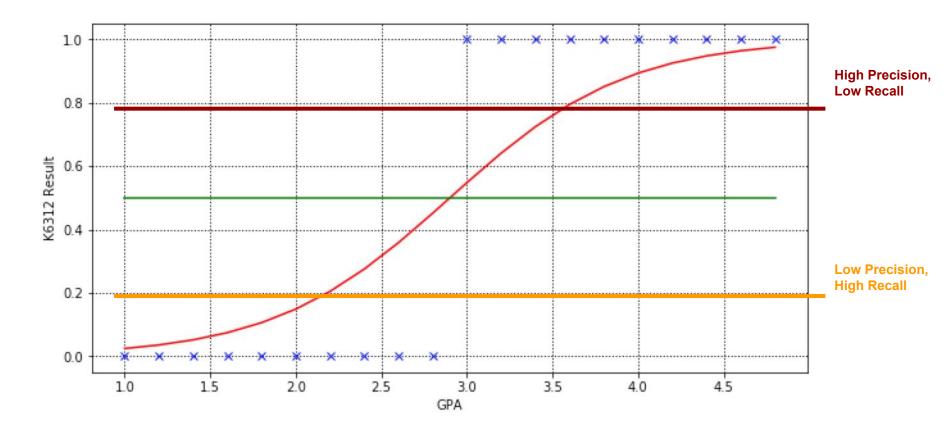
• Can we do better?

Precision vs Recall

- Case 1: Accuracy is high, but recall is low.
 - Examples?

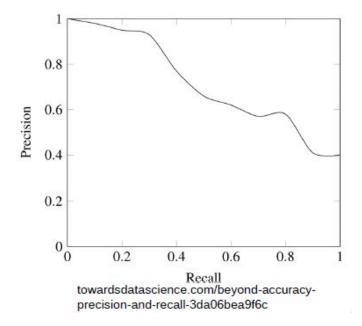
- Case 2: Accuracy is high, but precision is low.
 - Examples?

Precision vs Recall



Precision v.s. Recall

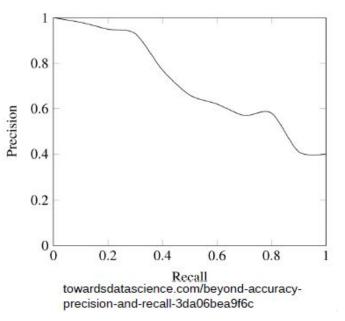
- Under non-trivial situation, precision and recall cannot be optimized at the same time
 - Which one to optimize depends on use cases



F1 Score Vs Accuracy

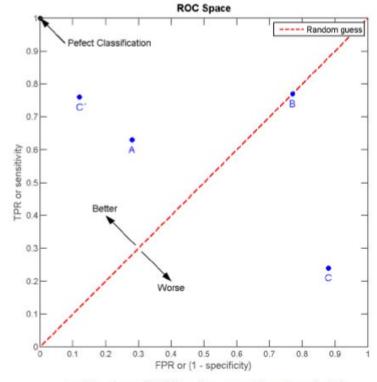
- Accuracy does not perform well for imbalanced data sets
 - Assume we have 100 transaction, 90 are non-fraud cases and 10 fraud ones
 - High accuracy can be achieved by classifying every transaction as non-fraud
- Precision and Recall can give more insights
- F1 Score conveys the balance between the precision and recall.

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$



Receiver Operation Characteristic

- Illustrates the diagnostic ability of a binary classifier as its discrimination threshold varies
- True positive rate (TPR) against the false positive rate (FPR) at various threshold



en.wikipedia.org/wiki/Receiver_operating_characteristic

Receiver Operation Characteristic

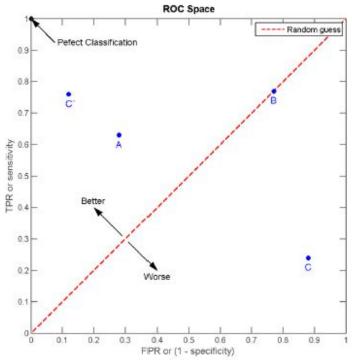
• **FPR**: Probability of False Alarm

 $FPR = \frac{FP}{FP + TN}$

• **TPR**: Probability of Detection

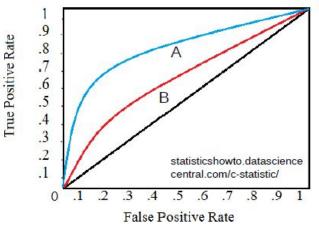
$$TPR = \frac{TP}{TP + FN}$$

- The best possible prediction method would yield a point in the upper left corner (0,1)
- The (0,1) point is also called a **perfect** classification
- A random guess would give a point along a diagonal



en.wikipedia.org/wiki/Receiver_operating_characteristic

Area Under the Curve



Area Under Curve (AUC) is the area under the ROC curve

AUC(A) > AUC(B)

Classifier A is better than Classifier B

- ROC curve plots parametrically TPR(T) versus FPR(T) with threshold T as the varying parameter
- AUC equals to the probability that the classifier will rank a randomly chosen positive example higher than a randomly chosen negative example
- AUC is one of the most widely used metrics for evaluation of binary classification problem

Multiclass Classification

Multiclass Classification

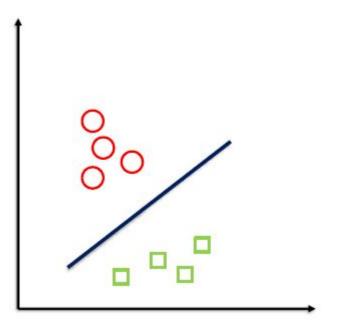
• Weather: Cloudy, Rain, Snow, ...

• Fruit: Apple, Orange, Peach, ...

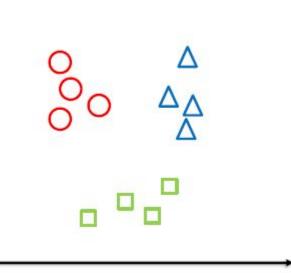
• Email tagging: Work, Ad, Friends, ...

Multiclass Classification

Binary classification



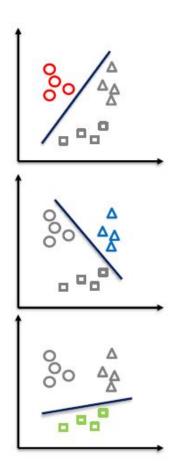
Multiclass classification



One-v.s.-All (One-v.s-Rest)

Train a LR classifier $p_i(y = 1|\mathbf{x})$ for each class *i* to predict the probability of y = i

$$i^* = \arg\max_i p_i(y = 1|\mathbf{x})$$



Softmax Classifier:

- Extend to 4-class classification
- Find 4 vectors w1, w2, w3, w4, such that
 - \circ P(C₁|x):P(C₂|x):P(C₃|x):P(C₄|x)

$$=e^{w_1^Tx}:e^{w_2^Tx}:e^{w_3^Tx}:e^{w_4^Tx}$$

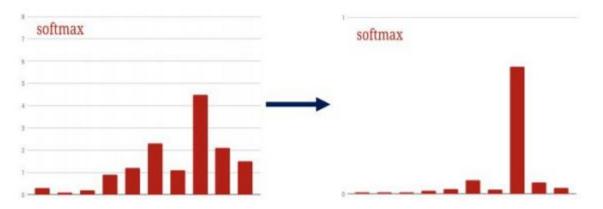
$$\stackrel{\circ}{}_{\circ} P(C_1|x) + P(C_2|x) + P(C_3|x) + P(C_4|x) = 1 \\ \stackrel{\circ}{}_{\circ} P(C_1|x) = \frac{e^{w_1^T x}}{e^{w_1^T x} + e^{w_2^T x} + e^{w_3^T x} + e^{w_4^T x}}$$

Softmax Function

Softmax Classifier:

- Extend from binary classification case
- Model the distribution of p(y=i|x), i=1,..., k, with softmax

$$P(y=i|\mathbf{x}) = rac{e^{w_i^Tx}}{\sum_j e^{w_j^Tx}}$$

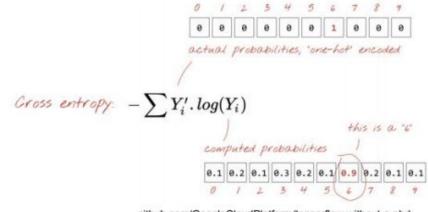


Softmax Classifier:

• The objective is to optimize cross entropy

$$L(\mathbf{w}) = -\sum_{i=1}^N \sum_{k=1}^K t_{ik} logp(y=k|\mathbf{x})$$

Where tik=1 if yi=k, otherwise 0



github.com/GoogleCloudPlatform/tensorflow-without-a-phd

Softmax Classifier

 z_1

 z_2

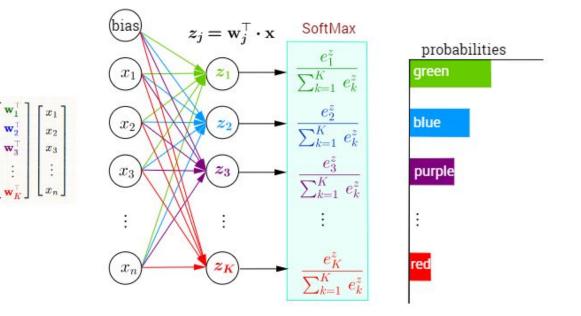
 z_3

:

 z_K

-

 $\mathbf{z} =$



https://stats.stackexchange.com/questions/265905/derivativ e-of-softmax-with-respect-to-weights

Generative vs Discriminative

For Classification

- Generative Approaches :
 - Given feature X and label Y, a generative model try to find the joint probability: P(X, Y)
 - How the data was generated?
 - From $P(X,Y) \rightarrow P(Y|X)$, then categorize
 - Less Direct, More Probabilistic
- Discriminative Approaches :
 - Given feature X and label Y, a discriminative model try to find the conditional probability: P(Y|X)
 - Distribution-free Approaches
 - Simply categorizes the data
 - More Direct, Less Probabilistic

Questions

- Generative and Discriminative?
 - Naive Bayes
 - Logistic Regression

Naive Bayes Model for Text Generation

- For the index of words in range(1, 2, 3,T)
 - Random sample the category hi from p(h) or hi is fixed
 - Sample the word from the distribution: $p(\boldsymbol{d}|\boldsymbol{h}_i)$
- However, it does not consider the words' intrinsic dependency
 - E.g., Probability (read the paper) > Probability(read the movie)
 - The words at index T should depend on previous words (T-1, T-2, T-3,...)
- Hidden Markov Model *partially* solve the above issue