# Text Preprocessing II

From textual information to numerical vector

# Bag-of-Words: counting is everything

#### **Vector Representation for Documents**

- Without any deep analysis of the linguistic content of the documents, we can describe each document by features that represent the most frequent tokens.
- Each row is a document, and each column represents a feature.
- Thus, a cell in the csv/excel file is a measurement of a feature (corresponding to the column) for a document (corresponding to a row).

#### Bag-of-Words

- Steps
  - Build vocab i.e., set of all the words in the corpus
  - Count the occurrence of words in each document

The cat and the dog play

The cat is on the mat

and, the, cat, dog, play, on, mat, is



corpus

vocab.

*countVec* 

#### **Document Features**

- How to define document features (i.e., entry value in the matrix)
  - Presence (0 or 1)
  - Frequencies (0,1,2,3)
  - Thresholding frequencies three values
    - 0 (do not exit), 1 (occurred once), and 2 (occurred 2 or more times)

#### Term Frequency-Inverse Document Frequency

- Tf-id(w): tf(w) \* idf(w), where  $idf(w) = log(1 + \frac{N}{df(w)})$ 
  - The tf-idf weight assigned to word w is the **term frequency** (i.e., the word count) modified by a scale factor for the importance of the word.
  - The scale factor is called the **inverse document frequency**, which checks the number of documents containing word w (i.e., *df(w)*) and reverses the scaling.
  - The N is the number of documents.

#### Term Frequency-Inverse Document Frequency

#### • Intuitive logic:

- Capture the importances of a word to document in a corpus
- Importance of words is proportionally to the number of times a word appears
- Importance of words is inversely proportionally to the document containing the word
- Thus, when a word appears in many documents, it is considered unimportant and the scale is lowered, perhaps near zero, e.g., "the", "I", "on", "document", etc.

#### **Multiword Features**

- A variety of measures can be used for this purpose.
  - E.g., frequent n-grams, such as "text mining", "hip hop"
- As another method, an Association Measure AM for the multiword T, is used for evaluation multiword features, where size(T) is the number of words in phrase T and freq(T) is the number of times phrases T occurs in the document collection.

$$AM(T) = rac{size(T)log_{10}(freq(T))freq(T)}{\sum_{word_i \in T} freq(word_i)}$$

• Generally, multiword features are not found too frequently in a document collection, but when they do occur they are often high predictive.

#### Compressed Sparse Row (CSR) Representation

- When prepare the feature matrix, most of the entries will be zero.
- Most documents contain a small subset of the vocab's words
- Rather than storing all the zeros, it may be better to represent the matrix as a set of sparse vectors, where a row is represented by a list of paris, one element of the pair being a column number and the other element being the corresponding nonzero feature value.



(2,15)(4,3)(1,8)(3,5)(4,2)

## Bag-of-Words

#### • Pros

- Simple
- Surprisingly effective
- Fast
- Cons
  - Order of words does not matter
  - Cannot capture syntactic/semantic information
  - High dimensionality

**Dictionary Reduction** 

### **Dictionary Reduction**

- Also called feature reduction techniques
- Due to curse of high dimensionality
- For BoW models:
  - Local dictionary
  - Removing Stopwords
  - Frequent Words
  - Feature Selection
  - Token reduction (stemming and synonyms)
  - Feature transformation (PCA, or Topic models)





### Feature Selection by Attribute Ranking

- Can select a set of features (e.g., a set of words) to form a local dictionary.
- Rank feature attributes according to their predictive abilities for the category under consideration.
  - **Sports**: soccer, football, etc. **Travel**: airport, cruise, etc
- In this approach, simply select the top-ranking features.
- Feature Selection approaches:
  - Document Frequency
  - Information Gain
  - Mutual Information
  - CHI
  - <u>A survey</u>



# Feature Selection based on Information Gain

#### On Widely Used Example

| Dutlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| vercast  | Mild        | High     | True  | Yes  |
| vercast  | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |



You may think the most important feature is the one that can be most related to the label.

#### Impurity of Splits

- S contain 20 occurrences of P and 20 of N.
- Assume each data has three binary features f1, f2, f3. Then, based on each feature, we are going to have three possible splits on the data.
- S1 means the feature is 0 and S2 means the feature is 1.
- For feature 1: S1 = 20P and S2 = 20N
- For feature 2: S1 = 10P, 10N and S2 = 10P, 10N
- For feature 3: S1 = 17P, 1N and S2 = 3P, 19N

## Entropy

• Entropy is the measure of the information in a set of examples.

$$Entropy = -\sum_{i=1}^{K} p_i log_2 p_i$$

- Where i={1,...,K}, K is the number of possible actions, pi is the proportion of each action i in the example set
- For example:

$$Entropy([9*,5+,6-]) = -rac{9}{20}log_2rac{9}{20} \ -rac{5}{20}log_2rac{5}{20} - rac{6}{20}log_2rac{6}{20}$$

- High Entropy: more information
- Low Entropy: less information



#### **Properties of Entropy**

- Maximized when events are heterogeneous (impure):
  - A set of many mixed classes (say, rgb OOO) is unpredictable. High Entropy

$$Entropy = log_2 K$$
 if all  $p_i = rac{1}{K}$ 

- Minimized when events are homogenous (pure):
  - A set of only one class (say, blue OOO) is extremely predictable. Low entropy

Entropy=0 if one  $\,p_i=1\,$  the rest are zeros

#### Entropy for binary case

- *S* is a sample of training examples
  - P+ is the proportion of positive examples in S
  - $\circ~$  P- is the proportion of negative examples in S

• Entropy measures the impurity of S



$$Entropy(S) = -p_+log_2p_+ - p_-log_2p_-$$

$$Entropy([9+,5-]) = -rac{9}{14}log_2(rac{9}{14}) - rac{5}{14}log_2(rac{5}{14}) = 0.94$$

#### **Information Gain**

• Entropy:

$$E(X) = -\sum_{i=1}^K p(X=X_i) log_2 p(X=X_i)$$
 .

- Intuition: uncertainty of X, information contained in X, expected information bits required to represent X.
- Conditional Entropy

 $E(X|Y) = \sum_{i=1} p(Y = Y_i) E(X|Y = Y_i)$ 

- Intuition: given y, how much uncertainty remains in X
- Mutual Information (Information Gain)

I(X, Y) = E(X) - E(X|Y) = E(Y) - E(Y|X)

**High IG, More Entropy Removed** 

• Intuition: how much knowing Y reduces uncertainty about X, and vice versa.

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

$$E = -\sum_{i=1}^{K} p_k \log_2 p_k$$
$$= -\frac{5}{14} \log_2 \frac{5}{14} - \frac{9}{14} \log_2 \frac{9}{14}$$
$$= 0.94$$

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

 $\Delta E(Humidity) = E - rac{m_{i=H}}{m} E(i=N) - rac{m_{i=N}}{m} E(i=H)$ 

$$= 0.94 - \frac{7}{14}H_L - \frac{7}{14}H_R$$

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

 $\Delta E(Humidity) = E - rac{m_{i=H}}{m} E(i=N) - rac{m_{i=N}}{m} E(i=H)$ 

$$= 0.94 - \frac{7}{14}H_L - \frac{7}{14}H_R$$

|       |   | 6,  | 6              | 1,               | 1   |
|-------|---|-----|----------------|------------------|-----|
| $H_L$ | = | 108 | $\frac{3}{27}$ | $-\frac{10g}{7}$ | 2 7 |

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

$$\Delta E(Humidity) = E - rac{m_{i=R}}{m} E(i=N) - rac{m_{i=N}}{m} E(i=H)$$
  
= 0.94 -  $rac{7}{14} H_L - rac{7}{14} H_R$ 

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$
  
= 0.592  
$$H_R = -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}$$
  
= 0.985

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

$$\Delta E(Humidity) = E - rac{m_{i=H}}{m} E(i=N) - rac{m_{i=N}}{m} E(i=H)$$

$$= 0.94 - \frac{7}{14}H_L - \frac{7}{14}H_R$$

$$0.94 - \frac{7}{14} 0.592 - \frac{7}{14} 0.985$$
  
= 0.94 - 0.296 - 0.4925  
= 0.1515

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

- 1. Compute the information gain for the rest three features:
  - outlook
- temperature
- windy
- 2. Should we select features with high IG or low IG?

#### When it comes to text mining

- The previous features/attributes will be "words" or "terms"
- The information gain of a term measures:
  - The expected reduction in entropy caused by partitioning the sample documents according to the term:

#### $IG(t) = -\sum_{i=1}^{m} p(c_i) logp(c_i) + p(t) \sum_{i=1}^{m} p(c_i|t) logp(c_i|t)) + p(\bar{t}) \sum_{i=1}^{m} p(c_i|\bar{t}) logp(c_i|\bar{t}))$

where

t is a term,

m is the total number of classes

 $p(c_i)$  is the percentage of documents in category ci from total sample documents

p(t) is the percentage of documents in which term t is present

 $p(\bar{t})$  is the percentage of documents in which term t is absent

 $p(c_i|t)$  is the conditional probability of category given term t

 $p(c_i|\bar{t})$  is conditional probability of category given term t is absent