
Text Preprocessing I
From textual information to numerical vector 



Late Policy

● Fill in the group information table (group name!) before 11:59 pm, Feb 1.  
Penalty is 2 scores for late filing.

● Late Policy for all assignments:
○ Without any reasonable justification, penalty is 25% for each additional 

late day.



A Simple Text Mining Case
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Our Task

● Example task: predict y, whether a string x is an email address
○ x: “rui.zhao@ntu.edu.sg”    y:1
○ x:  “ntuwkw”                         y:0
○ x:  “@trump”                        y:0

● How do you address the problem? 

mailto:rui.zhao@ntu.edu.sg


Feature Extraction

● Question: what properties of x might be relevant for predicting y?

● Feature extractor: Given input x, output a set of (feature name, feature value) 
pairs.

“ntu@gmail.com”

Length > 10 1

Length < 50 1

contain “@” 1

endwith “com” 1

endwith “sg” 0

length between @ and . 5

fraction of alpha 0.85

feature 
extractor

from top to down



Feature Vector notation

● Mathematically, feature vector does not need feature names:

feature 
vector 
space

Length > 10 1

Length < 50 1

contain “@” 1

endwith “com” 1

endwith “sg” 0

length between @ and . 5

fraction of alpha 0.85



Weight Vector notation

● Weight vector: for each feature j, have a specified parameter representing 
contribution of feature to prediction

Length > 10 -1.2

Length < 50 1.4

contain “@” 2.2

endwith “com” 0.6

endwith “sg” 0.5

length between @ and . 0.3

fraction of alpha 0.6



Linear Model

● Linear combine the features by the weight:
○ weighted combination of features

output:  -1.2*(1) + 1.4*(1) + 2.2*(1) + 0.6*(1) + 0.5*(0) + 0.3*(5) + 0.6*(0.85)



Linear Model

● Weight vector

● Feature vector

● For binary classification:



How do we learn model parameters

● From Data
● Define a loss function and then optimize



Introduction to Text 
Preprocessing



From Text to Numerical Features

● To mine text, we first need to process it into a form that data mining procedures 
can use.

● First of all, we have to determine features (think it as the columns of the 
spreadsheet).

● Some useful features are easy to obtain. 
○ the occurence of words 

● Some semantic information are much more difficult.
○ The grammatical function of a word in a sentence such as subject, object, et. 



Collecting Documents

● The first step in text mining is to collect the data (i.e., the relevant documents).
● In some applications, need to have a data collection process.

○ For a Web application, deploy a software tool such as a Web Crawler that collects the 
documents. 

○ In another application, an email audit application may log all incoming and outgoing messages at 
a mail server for a period of time.

● For research and development of text-mining techniques, more generic data 
may be necessary, usually called a corpus
○ the collection of Reuters news stories, such as the Reuters 21578 corpus and RCV1 (Reuters 

Corpus Volume 1; about 810, 000 Reuters, English Language News stories; tagged with topics).
○ a corpus from the Gutenberg Project, a very large collection of literary and other texts put into 

machine-readable form as the material comes out of copyright.
○ The Linguistic Data Consortium (LDC) provides various data.

https://www.gutenberg.org/
https://www.ldc.upenn.edu


Collecting Documents

● For research and development of text-mining techniques, more generic data 
may be necessary, usually called a corpus. 
○ The UC Irvine Machine Learning Repository currently maintain 468 datasets (e.g., amazon 

reviews, email spam and sentiment-labelled sentences)  as a service to machine learning 
community. 

○ Kaggle (data mining competition) also provides various data sets.



Text Normalization



Text Normalization

● Every NLP tasks including text mining needs to do text normalization: 
○ Segmenting/tokenizing words in running text
○ Normalizing word formats

■ convert to standard or common forms 
○ Segmenting sentences in running text



Tokenization



Tokenization

● Breaks the stream of characters into words or tokens. 
○ Trivial for a person familiar with the language structure.

● A computer program, though, being linguistically challenged, would find the task 
more complicated.

● The reason is that certain characters are sometimes token delimiters and 
sometimes not, depending on the application.

● The characters space, tab, and newline are always delimiters are not counted 
as tokens, often collectively called white space.

● The characters ( ) <> ! ? “ are always delimiters and may also be tokens.



Tokenization

● The characters . , : - ’ may or may not be delimiters, depending on their 
environment.

● Example cases
○ Numbers: 100,000 or 333-1221
○ Abbreviations: Dr. 
○ Part of the current token: isn’t or D’angelo
○ Possessive: Tess’

● To get the best possible features, one may need to customize the tokenizer for 
the available text.
○ E.g., part: 123-4567

● The tokenization process is language-dependent.



Example Issues in Tokenization

Raw Text

○ Finland’s capital
○ What’re, I’m, isn’t
○ Hewlett-Packard
○ state-of-the-art
○ San Francisco

Tokenized Text

➢ Finland Finlands Finland’s ?
➢ what are, I am, is not ?
➢ Hewlett Packard ?
➢ state of the art ?
➢ one token or two?

● Online Word Tokenization with python NLTK 
○ http://text-processing.com/demo/tokenize/
○ E.g., “He is in Finland’s capital”

http://text-processing.com/demo/tokenize/


Tokenization: language issues

● Chinese and Japanese have no spaces between words:
○ 孙燕姿现在居住在新加坡东南部

○ 孙燕姿             现在  居住 在  新加坡 东南部

○ Stefanie Sun    now  lives in  Singapore southeastern
● Further complicated in Japanese, with multiple alphabets intermingled.



Word Tokenization in Chinese 

● Also called Word Segmentation
● Chinese words are composed of characters.

○ average length is 2.4 char. long.
● Standard baseline segmentation algorithm

○ Maximum Matching (also called Greedy)



Maximum Matching Word Segmentation Algorithm

● Given a wordlist of Chinese (i.e. dictionary), and a string.

1. Start a pointer at the beginning of the string
2. Find the longest word in dictionary that matches the string starting at pointer
3. Move the pointer over the word in string
4. Go to 2

○ 孙燕姿现在居住在新加坡东南部

○ 孙燕姿             现在  居住 在  新加坡       东南部

○ Stefanie Sun   now  lives  in  Singapore  southeastern



○ 孙燕姿现在居住在新加坡东南部

○ 孙燕姿             现在  居住 在  新加坡       东南部

○ Stefanie Sun   now  lives  in  Singapore  southeastern

Max-match segmentation illustration

● Doesn’t generally work in English!
● But works well in Chinese

● Moder probabilistic segmentation algorithms even better.
○ E.g., “the table” has a higher chance than “theta bled”.

○ Thecatinthehat

○ Thetabledownthere

the cat in the hat

the table down there

theta bled own there



Words Properties 

● Relations among word surface forms and their senses:
○ Homonymy: same form, but different meaning

■ E.g., bank: river bank and financial institution
○ Polysemy: same form, related meaning

■ E.g., man: the human species, male of the human species, and adult males of the human 
species.

○ Synonymy: different form, same meaning
■ E.g., singer and vocalist

● Word frequencies in texts have power law distribution:
○ …small number of very frequent words
○ ...big number of low frequent words
○ Also called Zipf’s Law

Word Freq. 

Word 
Probs. 



How many words?

● N= number of tokens
● V= vocabulary=set of types

https://books.google.come/ngrams

|v| is the size of the vocabulary

https://books.google.come/ngrams


Stop Words

● Stop-words are words that from non-linguistic view do not carry information
○ They have mainly functional role.
○ Usually we remove them to help the methods to perform better.

● Natural language dependent - examples:
○ English:    A, ABOUT, ABOVE, ACROSS, AFTER, FROM, AGAIN,.....
○ Chinese:  的，一，不， 在， 有， 。。。。

https://www.ranks.nl/stopwords

https://www.ranks.nl/stopwords


Stop Words

● Example Stop words

○ Information System Asia Web - provides research, IS-related commercial materials, interaction, 
and even research sponsorship by interested corporations with a focus on Asia Pacific region.

○ Survey of Information Retrieval - guide to IR, with an emphasis on web-based projects. 
Includes a glossary, and pointers to interesting papers.



Normalization



Normalization

● Need to normalize terms
○ Information Retrieval (IR): indexed text & query terms must have the same form.

■ we want to match U.S.A and USA
● We define equivalence class of terms
● Alternative: query expansion

○ Enter: window                       Search: window, windows
○ Enter: windows                     Search: Windows, windows, window

● Potentially more powerful, but less efficient



Normalization

● Converts each of the tokens to a standard form, a process usually referred to 
as stemming or lemmatization.

● Whether or not this step is necessary is application-dependent.
● One effect of normalization is to reduce the number of distinct types (i.e. unique 

terms) in a text corpus and to increase the frequency of occurrence of some 
individual types.
○ E.g., types and typed -> type

● For classification algorithms that take frequency into account, this can 
sometimes make a difference.



Case Folding

● Applications like IR: reduce all letters to lower case
○ Since users tend to use lower case, such as Car, CAR -> car
○ Possible exception: upper case in mid-sentence? 

■ E.g.:
● General Motors vs. general motors
● Fed vs. fed

○ Fed: Federal Reserve
● SAIL vs. sail

○ SAIL: Stanford Artificial Intelligence Language, etc
● For Sentiment Analysis and Information Extraction

○ Case is helpful (US versus us is important)
○ E.g., “US won a gold medal”; “They like US.” Vs. “They like us.”



Lemmatization - Stemming to a Root

● Converts to a root form with no inflectional or derivational prefixes and suffixes.
○ Inflectional suffixes are endings such as “-ed”, “-ing”, “s”, etc.

■ Create different forms of the same word (different grammatical forms)
○ Derivational suffixes are endings such as “-ism”, “-ful”, “-fy”, etc.

■ Change the meaning of the word
○ E.g., “denormalization’ is reduced to the stem “norm”. 
○ E.g., “reapplied”, “applications” -> “apply”

● Words with the same core meaning are coalesced.
● The end result of such aggressive stemming is to reduce the number of types 

in a text collection very drastically, thereby making distributional statistics more 
reliable. 



Lemmatization

● Additional examples
○ Reduce variant forms to base form

■ am, are, is  -> be
■ car, cars, car’s, cars’ -> car

○ the boy’s cars are different colors -> the boy car be different color
● Lemmatization: have to find correct dictionary headword form (i.e. root or 

lemma form).
● E.g., Stanford CoreNLP (http://stanfordnlp.github.io/CoreNLP/) supports 

lemmatization.
○ http://nlp.stanford.edu:8080/corenlp/

http://stanfordnlp.github.io/CoreNLP/
http://nlp.stanford.edu:8080/corenlp/


Some Terms: Morphology

● Morphemes:
○ The small meaningful units that make up words.
○ E.g., un-like-ly contains three.
○ Stems: the main part of a word that stays the same when endings are added to it.

■ E.g., writ is the stem of writes, writing, and written.
○ Affixes: Bits and pieces that adhere to stems (i.e. the prefix and suffix)

■ Often with grammatical functions
■ E.g., likes.



Stemming
● When the normalization is confined to regularizing grammatical variants such 

as singular/plural and present/past, the process is called “inflectional 
stemming.” 
○ This is called “morphological analysis”

● For a language such as English, with may irregular word forms and non-intuitive 
spelling, it is more difficult.
○ E.g., sought -> seek

● In English, an algorithm for inflectional stemming must be part rule-based and 
part dictionary-based.

● Any stemming algorithm for English that operates only on tokens, without more 
grammatical information such as part-of-speech, will make some mistakes 
because of ambiguity.
○ For example, is “bored” the adjective as in “he is bored” or is it the past tense of the verb “bore”?
○ He bored her with his stories about military life.



Stemming
● Reduces terms to their stems. 

○ E.g., used in information retrieval and text mining applications.
● Stemming is crude chopping of affixes.

○ Language dependent
○ e.g., automates, automatic, automation all reduced to automat.



Stemming with Python NLTK



Sentence Boundary Detection



Sentence Boundary Determination

● For more sophisticated linguistic parsing, the algorithms often require a 
complete sentence as input.
○ E.g., sentence-level sentiment analysis

● We shall also see other information extraction algorithms that operate on a 
sentence at a time.

● Sentence boundary determination is essentially the problem of deciding which 
instances of a period (.) followed by whitespace are sentence delimiters and which are not since 
we assume that the characters ? and ! are unambiguous sentence boundaries.



Sentence Segmentation

● !, ? are relatively unambiguous
● Period . is quite ambiguous

○ Sentence boundary
○ Abbreviations like Inc. or Dr.
○ Numbers like .02% or 4.3 

● Build a binary classifier
○ Looks at a “.”
○ Decides EndOfSentence/NotEndOfSentence
○ Classifiers: hand-written rules, regular expressions, or machine learning





Implementing Decision Trees

● A decision tree is just an if-then-else statement.
○ We can think of the questions in a decision tree.

● The interesting research is choosing the features.
● Setting up the structure is often too hard to do by hand.

○ Hand-building only possible for every simple features, domains.
■ For numeric features, it is too hard to pick each threshold.

○ Instead, structure usually learned by machine learning from a training corpus.
● The features could be exploited by any kind of classifier

○ SVM, Neural Networks, Logistic Regression, etc.



Sentence Boundary Determination

End-of-sentence 
detection 
algorithm



Syntactic Analysis



Syntactic Analysis 

● Part-of-Speech Tagging

● Word Sense Disambiguation

● Parsing 



Part-of-Speech Tagging

● If no further linguistic analysis is necessary, one might proceed directly to 
feature generation, in which the features will be obtained from the tokens (E.g., 
linguistic and analysis from this sentence). 

● However, if the goal is more specific, say recognizing names of people, places, 
and organizations, it is usually desirable to perform additional linguistic 
analyses of the text and extract more sophisticated features.
○ E.g., San Francisco

● In English, some analyses may use as few as six or seven categories and 
others nearly one hundred. 

● Most English grammars would have a minimum noun, verb, adjective, adverb, 
preposition, and conjunction.



Part-of-Speech Tagging

● POS can be used for feature reduction, e.g., use only verb, adjective, and 
adverb for sentiment classification.

● Distribution of POS can be used for author, gender, and document genre 
(formal vs. informal) classification



Part-of-Speech Tagging

● A set of 36 categories is used in the PennTree Bank 
(https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html) constructed from the Wall Street 
Journal corpus (see next page)
○ A tree bank is a parsed text corpus that annotates sentence structure, such as POS and phrases.

● Almost all POS taggers have been trained on the Wall Street Journal corpus 
available from LDC (linguistic Data Consortium, www.ldc.upenn.edu)
○ E.g., I love you -> I (personal pronoun) love (verb, not noun)

● The Brill tagger is in the public domain and is in wide use.
○ Online Brill tagger:  https://nlpweb01.nors.ku.dk/online/pos_tagger/uk/index.html

● The Stanford Parser: a statistical parser
○ An implementation in Java: https://nlp.stanford.edu/software/lex-parser.shtml

 

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html
http://www.ldc.upenn.edu
https://nlpweb01.nors.ku.dk/online/pos_tagger/uk/index.html
https://nlp.stanford.edu/software/lex-parser.shtml


Penn Tree Bank POS set



Part-of-Speech Tagging

● The Stanford Parser: online parser
○ http://nlp.stanford.edu:8080/parser/

http://nlp.stanford.edu:8080/parser/


Part-of-Speech Tagging

● The Stanford Parser: online parser
○ http://nlp.stanford.edu:8080/parser/

http://nlp.stanford.edu:8080/parser/


Word Sense Disambiguation

● Let’s disambiguate “bank” in this sentence:
○ The bank can guarantee deposits will eventually cover future tuition costs because it invests in 

adjustable-rate mortgage securities.

● Given the following two WordNet senses:



WSD: The Simplified Lesk Algorithm

● Choose sense with most word overlap between gloss and context (not 
counting stop words)
○ The bank can guarantee deposits will eventually cover future tuition costs because it invests in 

adjustable-rate mortgage securities.



WSD

● Performs the classic Lesk algorithm for Word Sense Disambiguation (WSD) 
○ Given an ambiguous word and the context in which the word occurs, Lesk returns a Synset with the 

highest number of overlapping words between the context sentence and different definitions from 
each Synset.

○ http://www.nltk.org/howto/wsd.html

http://www.nltk.org/howto/wsd.html


WSD

● Use Babelfy for Word Sense Disambiguation (WSD)
○ Considered as a state-of-the-art system based on BabelNet Multilingual Semantic network for 

multilingual Word Sense Disambiguation and Entity Linking.
○ http://babelfy.org/

http://babelfy.org/


Parsing

● Is the step of producing a full parse of a sentence.
● Each word in a sentence is connected to a single structure, usually a tree. 
● Considerable research has been done on constructing parasers from a 

statistical analysis of tree banks of sentences parsed by hand.
● The reason for considering such a comparatively expensive process is that it 

provides detailed syntactic relationships information that phrase 
identification cannot provide. 



Parsing

● Consider a sentence such as “Johnson was replaced at XYZ Corp. by Smith” 
for which a simple parse tree is shown in the below.



Parsing

● Universal dependencies (i.e. grammatical relations; evolved out of Stanford 
Dependencies) from Stanford Parser: “I like him”. 

Output from Stanford Parser Output from Stanford CoreNLP

https://universaldependencies.org/
http://nlp.stanford.edu:8080/parser/index.jsp
http://nlp.stanford.edu:8080/parser/index.jsp
http://nlp.stanford.edu:8080/corenlp/process


Parsing

● Universal dependencies (i.e. grammatical relations; evolved out of Stanford 
Dependencies) from Stanford CoreNLP: “Johnson was replaced at XYZ Corp. 
by Smith”. 

https://universaldependencies.org/


● For these above tasks such as tokenization, POS, Parsing and so on, we can 
build our machine learning models from scratch.

● However, in almost 80% of applications, the off-the-shelf tools (NLTK, Stanford 
CoreNLP, Spacy and Textblob) are used 



WordNet: Linguistic 
Resources



WordNet - a database of lexical relations

● WordNet is the most well developed and widely used lexical database for 
English
○ It consists from 4 databases (nouns, verbs, adjectives, and adverbs)
○ On-line version: http://wordnetweb.princeton.edu/perl/webwn

● Each database consists of sense entries consisting from a set of synonyms 
(synsets), e.g.,:
○ musician, instrumentalist, player
○ person, individual, someone
○ life form, organism, being

http://wordnetweb.princeton.edu/perl/webwn


WordNet - a database of lexical relations



WordNet relations

● Each WordNet entry is connected with other entries in a graph through 
relations.



WordNet relations

● Relations in the database of nouns.


