
Recurrent Neural Network
for NLP

Sequential NLP Data

Sequential Data

• Characters in words

• Words in sentences

• Sentences in paragraphs

• Paragraphs in documents

NLP is full of sequential data

Dependencies in Language

Dependencies: the relationship between two words (it can be semantic or syntax)

● It is equal to the sequential information contained in the sequence data.

Long-distance Dependencies in Languages

Examples

● He does not have very much confidence in himself

● The rain has lasted as long as the life of clouds

● The trophy would not fit in the brown suitcase because it was too small

Sequential NLP Data

Model Sequence Model

Machine learning models should capture this kind of sequential information in NLP data.

Complex Semantic
1. Input Text: a sequence of words;

2. Through Word Embedding Look-up:
a sequence of word vectors;

3. Neural networks is applied upon the vector
sequences to learn semantic composition for
final prediction;

➔ Human understand the word meaning
firstly, then get the whole sentence
meaning by composing these words’
meaning together.

RNN

Examples

● Tagging Task: Assuming we have a predefined set of tags, we assign a tag to
each word in input sentences.

● Given an input sentence: I would like to arrive at Singapore on Mar. 29.

Singapore -> Dest. Place
Mar. 29 -> Time of Arrival

Feed-forward Network

● Input: Each word (word vector)

● Output: Prob. Scores that the
input word belong to the tag

x1 x2

h1 h2

y1 y2

Singapore

Arrival Departure

Confusing Case

x1 x2

h1 h2

y1 y2

Singapore

Arrival Departure

Neural Network
needs Memory

● Input Sentence 1:

I would like to arrive at Singapore on Mar. 29.

● Input Sentence 2:

 I would like to leave Singapore on Mar. 29.

Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

Arrival Departure
The outputs of hidden layer are
stored in the memory.

a0 a1

Memory can be considered as
another input

Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

Given initial values a0 a1

All weights are 1, no bias,
linear activation

0 0

1 1

2 2

4 4
Input Seq : [1, 1] [1, 1] [2, 2]
Output Seq: [4, 4]

Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

Using previous
hidden output

a0 a1

All weights are 1, no bias,
linear activation

2 2

1 1

6 6

12 12
Input Seq : [1, 1] [1, 1] [2, 2]
Output Seq: [4, 4] [12, 12]

Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

a0 a1 6 6

2 2

16 16

32 32
Input Seq : [1, 1] [1, 1] [2, 2]
Output Seq: [4, 4] [12, 12] [32, 32]

Try [1, 1] [2, 2], [1,1]

Sequence Order Matters

Back to Our Case

Arrive SG on Mar 29th.

Prob. Distribution
Of arrive in all
tags

Prob. Distribution
Of SG in all tags Prob. Distribution

Of on in all tags

Back to Our Case
Prob. Distribution
Of arrive in all
tags

Prob. Distribution
Of SG in all tags

Arrive SG

Prob. Distribution
Of leave in all
tags

Prob. Distribution
Of SG in all tags

Leave SG

Are these two probs. distribution of SG same ? And Why?

Recurrent Neural Network (Elman 1990)

● Recurrent neural network is proposed to utilize information from previous time
steps and current information to make reasoning at the current step

https://www.bouvet.no/bouvet-deler
/explaining-recurrent-neural-networ
ks

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks

Neuron computation of RNN
• Model parameters are tied across all time steps (run the same

RNN cell)

Focus on certain
time step

• We need as the initialization vector for the hidden layer
at time step 0.

• Inputs enter and move forward at each time step

Features
at time t

Hidden output
at time t

Hidden layers vector
at time step t

Input vector at time
step t

Predictions
at time step t

Time-Invariant Model
Parameters

Sequence Tagging

RNN RNN RNN

I hate hotpot

predict predict predict

prediction 1 prediction 2 prediction 3

RNN

predict

Input
vectors

Hidden
vectors

RNN Layer

Recurrent Neural Network

● Recurrent neural network works in a chain way

● The method is in naturally suitable for processing sequences data

● A broad applications:

○ Speech Recognition

○ Time series Prediction

○ Language Modeling

○ Machine Translation

Language Models
● A language model computes a probability for a sequence of words:

○ P(w1,..., wT)

● Useful for machine translation/Question Answering

○ Word Ordering

■ p(the cat is small) > p(small is the cat)

○ Word Choice

■ p(walking home after school) > p(walking house after school)

Traditional Methods

● Probability is usually conditioned on window of n previous words

● An incorrect but practical Markov Assumption

● To estimate probabilities, compute for unigram and bigrams

Traditional Methods

● A lot of n-grams and extremely large combinations

○ Requires large RAM requirements

● Use one machine with 140GB RAM for 2.8days to built a model on 126 billion
tokens.

RNN-based Language Model
● A language model computes a probability for a sequence of words:

○ P(w1,..., wT)

○ Useful for machine translation, Chatbot and Question Answer Systems.

● Language Modelling can be formulated as a tagging problem

● Each label/tag is the next word!

Sequence Classification

RNN RNN RNN

I hate hotpot

predict

Label

RNN Training is Hard

• Real experiments on Language Models

Rough Error Surface of RNN

Exploding/Vanishing
Gradient

Toy Example

1 0 0 0 0

1

1

1

1

1

1

1

1

1

1

y1 y2 y1000

w = 1 y1000 = 1

w = 1.01 y1000 = 20000

w = 0.99 y1000 ~= 0

 w = 0.01 y1000 ~= 0

Large Gradient:
dL/dw

Small Gradient:
dL/dw

Irregular
Error
Surface

no bias,
linear activation

w w w w w 0

Initial Hidden
State

Backpropagation Through Time

Chain rule => Multiplications

Can explode or vanish

Exploding Gradient Solutions
● Truncated BPTT

○ Do not take the derivative all the way back to the beginning of the input sequence

● Clip gradients at threshold

● RMSprop to adjust learning rate
○ Adapt learning rate by dividing by the root of squared gradient

Only through T time steps if t>= T

Vanishing Gradient Problem
● The error at a time step ideally can tell a previous time step from many steps

away to change during backprop
● Can not capture long-term dependency

● The representation from time steps 0 and t can not travel to influence the time
step t+1

● Harder to detect

Vanishing Gradient Solutions
● RMSprop

○ Adapt learning rate by dividing by the root of squared gradient

● Advanced activation functions such as leakyRelu function

● Gated RNN (LSTM and GRUs)

○ Using gates in cell computation to control information
flow

RNN GRU LSTM

ReLu Leaky ReLu

Partially
Solved

RNN’s Bottleneck

• RNN is not suitable for parallel computation.

• RNN’s training is not easy
○ Gradient Vanishing
○ Gradient Exploding

