
Recurrent Neural Network 
for NLP



Sequential NLP Data



Sequential Data

• Characters in words

• Words in sentences

• Sentences in paragraphs

• Paragraphs in documents

NLP is full of sequential data



Dependencies in Language

Dependencies: the relationship between two words (it can be semantic or syntax)

● It is equal to the sequential information contained in the sequence data. 



Long-distance Dependencies in Languages

Examples

● He does not have very much confidence in himself

● The rain has lasted as long as the life of clouds

● The trophy would not fit in the brown suitcase because it was too small



Sequential NLP Data

Model Sequence Model

Machine learning models should capture this kind of sequential information in NLP data. 



Complex Semantic
1. Input Text: a sequence of words;

2. Through Word Embedding Look-up: 
a sequence of word vectors;

3. Neural networks is applied upon the vector 
sequences to learn semantic composition for 
final prediction;

➔  Human understand the word meaning 
firstly, then get the whole sentence 
meaning by composing these words’ 
meaning together. 



RNN 



Examples

● Tagging Task: Assuming we have a predefined set of tags, we assign a tag to 
each word in input sentences.

● Given an input sentence: I would like to arrive at Singapore on Mar. 29.

                    

Singapore  ->  Dest. Place
Mar. 29      ->  Time of Arrival



Feed-forward Network

● Input: Each word (word vector)

● Output: Prob. Scores that the 
input word belong to the tag

                    

x1 x2

h1 h2

y1 y2

Singapore

Arrival Departure



Confusing Case

x1 x2

h1 h2

y1 y2

Singapore

Arrival Departure

Neural Network 
needs Memory 

● Input Sentence 1: 

I would like to arrive at Singapore on Mar. 29.

● Input Sentence 2:

   I would like to leave Singapore on Mar. 29.

                    



Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

Arrival Departure
The outputs of hidden layer are 
stored in the memory. 

a0 a1

Memory can be considered as 
another input



Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

Given initial values a0 a1

All weights are 1, no bias, 
linear activation

0 0 

1 1 

2 2 

4 4 
Input Seq   :    [1, 1]    [1, 1]   [2, 2]
Output Seq:    [4, 4]



Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

Using previous 
hidden output

a0 a1

All weights are 1, no bias, 
linear activation

2 2 

1 1 

6 6 

12 12 
Input Seq   :    [1, 1]    [1, 1]   [2, 2]
Output Seq:    [4, 4]    [12, 12]



Neural Network with Memory

x1 x2

h1 h2

y1 y2
Store

a0 a1 6 6 

2 2 

16 16 

32 32 
Input Seq   :    [1, 1]    [1, 1]   [2, 2]
Output Seq:    [4, 4]    [12, 12]  [32, 32]

Try [1, 1] [2, 2], [1,1]

Sequence Order Matters 



Back to Our Case

Arrive SG on Mar 29th.

Prob. Distribution 
Of arrive in all 
tags

Prob. Distribution 
Of SG in all tags Prob. Distribution 

Of on in all tags



Back to Our Case
Prob. Distribution 
Of arrive in all 
tags

Prob. Distribution 
Of SG in all tags

Arrive SG

Prob. Distribution 
Of leave in all 
tags

Prob. Distribution 
Of SG in all tags

Leave SG

Are these two probs. distribution of SG same ? And Why?



Recurrent Neural Network (Elman 1990)

● Recurrent neural network is proposed to utilize information from previous time 
steps and current information to make reasoning at the current step

https://www.bouvet.no/bouvet-deler
/explaining-recurrent-neural-networ
ks

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks


Neuron computation of RNN
• Model parameters are tied across all time steps (run the same 

RNN cell)

Focus on certain 
time step

• We need                      as the initialization vector for the hidden layer 
at time step 0.

• Inputs enter and move forward at each time step 

Features 
at time t

Hidden output 
at time t

Hidden layers vector 
at time step t

Input vector at time 
step t

Predictions 
at time step t

Time-Invariant Model 
Parameters 



Sequence Tagging

RNN RNN RNN

I hate hotpot

predict predict predict

prediction 1 prediction 2 prediction 3

RNN

predict

Input 
vectors

Hidden 
vectors

RNN Layer



Recurrent Neural Network 

● Recurrent neural network works in a chain way

● The method is in naturally suitable for processing sequences data

● A broad applications: 

○ Speech Recognition

○ Time series Prediction

○ Language Modeling

○ Machine Translation



Language Models
● A language model computes a probability for a sequence of words: 

○ P(w1,..., wT)

● Useful for machine translation/Question Answering

○ Word Ordering 

■ p(the cat is small) > p(small is the cat)

○ Word Choice

■ p(walking home after school) > p(walking house after school)

             



Traditional Methods

● Probability is usually conditioned on window of n previous words

● An incorrect but practical Markov Assumption

● To estimate probabilities, compute for unigram and bigrams



Traditional Methods

● A lot of n-grams and extremely large combinations 

○ Requires large RAM requirements

● Use one machine with 140GB RAM for 2.8days to built a model on 126 billion 
tokens. 



RNN-based Language Model
● A language model computes a probability for a sequence of words: 

○ P(w1,..., wT)

○ Useful for machine translation, Chatbot and Question Answer Systems.

● Language Modelling can be formulated as a tagging problem

● Each label/tag is the next word!



Sequence Classification

RNN RNN RNN

I hate hotpot

predict

Label



RNN Training is Hard

• Real experiments on Language Models



Rough Error Surface of RNN

Exploding/Vanishing 
Gradient



Toy Example 

1 0 0 0 0
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y1 y2 y1000

w = 1   y1000   = 1

w = 1.01   y1000   = 20000

w = 0.99   y1000   ~= 0

    w = 0.01   y1000   ~= 0

Large Gradient: 
dL/dw 

Small Gradient: 
dL/dw 

Irregular 
Error 
Surface

no bias, 
linear activation

w w w w w 0

Initial Hidden 
State



Backpropagation Through Time

Chain rule  => Multiplications

Can explode or vanish



Exploding Gradient Solutions
● Truncated BPTT

○ Do not take the derivative all the way back to the beginning of the input sequence

● Clip gradients at threshold

● RMSprop to adjust learning rate
○ Adapt learning rate by dividing by the root of squared gradient

Only through T time steps if t>= T



Vanishing Gradient Problem
● The error at a time step ideally can tell a previous time step from many steps 

away to change during backprop
● Can not capture long-term dependency

● The representation from time steps 0 and t can not travel to influence the time 
step t+1

● Harder to detect

 



Vanishing Gradient Solutions
● RMSprop

○ Adapt learning rate by dividing by the root of squared gradient

● Advanced activation functions such as leakyRelu function

● Gated RNN (LSTM and GRUs)

○ Using gates in cell computation to control information 
flow

 

RNN GRU LSTM

ReLu Leaky ReLu

Partially 
Solved



RNN’s Bottleneck

• RNN is not suitable for parallel computation. 

• RNN’s training is not easy
○ Gradient Vanishing 
○ Gradient Exploding


