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Vector Semantic



•  How to represent word in a vector space 

Word Representation

One-hot Vector



•  Can we use the above one-hot vector for words?

•  Can not capture the semantics of the corresponding words



Vector Semantics
•  Words are characterized by the words that occur with them. 

 
•  Words are close to each other in the vector space if they are semantically closer to 

each other.
                           

•  It is also called distributional semantics.



Motivations
•  “You shall know a word by the company it keeps”  - by Firth (1957)

 
•  Example from Nida (1975); Lin(1998); Jurafsky (2015)

What is Tesgüino?
A bottle of Tesgüino is on the table.
Everybody likes tesgüino
Tesgüino makes you drunk
We make Tesgüino out of corn

•  From context words, the meaning behind the word can be inferred as:
○ An alcoholic beverage like beer.

https://en.wikipedia.org/wiki/Tesg%C3%BCino


• Words are represented by their context.
• Two words are similar if they have similar word contexts. 

Distributional Semantics

Context: Nearby Words



Bag-of-words
• We represent how often a word occurs in a document

○ Sklearn countvectorizer
○ It is called document-term matrix

• If we look at the column instead of the row

I eat an apple every day

I eat an orange every day

I like driving my car to work



Term-Document Matrix
• Each document is a count vector in a vector space whose dimension is D

○ D is the number of documents
○ The shape of the matrix is |V| * D
○ Each row is the vector for the word
○ Two words are similar if their vectors are similar



Word-word matrix
• Document is a kind of “context”. However, it is too abstract.

• Smaller context will be better:
○ Window of  k nearby words, here k can be 2,3,4,.. 

• Instead of term-document matrix, we are going to have word-word matrix
○ Each word vector’s dimension will be |V|
○ The matrix will be the shape of |V| * |V|

• To build the word-word matrix:
○ Co-occurrence: For a given corpus, the co-occurrence of a pair of words say w1 and 

w2 is the number of times they have appeared together in a Context Window .
○ Context Window: Context window is specified by a number and the direction (usually 

set to be left and right).



• For context window: the window size is 2 and the direction is set to be right and left. 

I eat an apple every day

I eat an orange every day

I like driving my car to work

For example

The co-occurrence: (every,             an):                       2 
                                (every,             apple):                   1

    (every,              day):                     2

Target words Context words Co-occurrence Number



• Size will be V * V.  
• High-dimensional and very sparse
• Symmetry

Word-word matrix

I eat an apple every day

I eat an orange every day

I like driving my car to work

Targets

Contexts



• Under different window sizes, we will have different word-word matrix

The size of window

Win size=1 Win size=3

• From Jurafasky (2015): the size of windows depends on your goals
○ The shorter the windows, the more syntactic the vector (1-3)
○ The longer the windows, the more semantic the representation  (4-10)



• Raw word frequency is not a great measure of association between words
○ Very skewed distribution. For example, the and of are very frequent, but may not the 

most discriminative
○ Think about the following two cases: (banana, monkey), (the, monkey)

Raw Count 

The measure should indicate whether is context word is particularly informative about the 
target word.



• PMI
○ Do events x and y co-occur more than if they were independent? 
○ Here, events will be words

• Usually, we adopt Positive PMI (PPMI)
○ Positive Pointwise Mutual Information (PPMI)

Pointwise Mutual Information (PMI)

Penalize high-frequent words
Positive PPMI: if PPMI is 
negative, make it zero

The bit only has two 
states: 0 and 1. 
Therefore, the log base 
in PMI is usually set to 
be 2. 



• Count-based or PPMI-based Vectors:
○ High dimensionality ( |V| easily over 10,000)
○ Sparse

• Dense Vector:
○ Low dimensionality (from 50-300)
○ Dense

Dense Vectors

Dense vector:  1  Reduce overfitting (when they are used as features in downstream ML)
                        2  Each dimension in dense vector can contain more semantic information (like “topic”)



Distributed Representation
•   Words should be encoded into a low-dimensional and dense vector



• Matrix decomposition can be applied on the word-word matrix.
• Singular Value Decomposition (SVD) is one of the classic methods.

○ Change the dimensions such that they are orthogonal to each other.
○ The new vector space will keep the first k dimensions that explain the largest amount 

of variance in the data.
○ Each new dimension is a linear combination of previous dimensions, given by the 

project matrix learned from SVD)

From Sparse Vectors to Dense Ones

When k is set to be 5 in our toy example. 



Word Vectors

Project word 
vectors in a 
two-dimensional 
space. And 
visualize them!

Similar words 
are close to 
each other.



• Another approach is prediction based methods instead of matrix methods.

• We would like to build a machine learning model for the task that given target words, can we 
predict their context words?  Or  Given context words, can we predict their target words?

• Symmetric Matrix  and Symmetric Tasks

• What is the most powerful supervised prediction model given enough data? 
○ Neural network

• It is the Word2Vec model: a neural network based word embedding model.

Neural Word Embeddings



Input words Neural Network Output words

Neural Network Solution

Input word and output words should be sampled from the same context
Another self-supervised learning example

Monkey
banana 

apple

cake

hotpot

probabilities

vocab



Applications of Word 
Embeddings



• Word2vec, Glove, Fastext, and other open-source nlp methods can learn dense and 
low-dimensional vectors for words

• We can solve lots of word-level NLP problem.
 

•  Starting from word embeddings, we can learn vectors for higher-level natural language 
units such as sentences and documents. 

Word Embeddings



Word Analogy

Man: Woman  ：：King :??

Find w to minimize:
 ||vman - vwoman + vking - vw||2



Expanding Knowledge Base

Discover “new” words in a category: 

https://arxiv.org/pdf/1511.06961.pdf

Given the list Generate more examples

Word Embedding Solution: Estimate “the best line” to capture the semantics behind the given 
words (rank 1  SVD on the embeddings), find other words whose embeddings are close to this 
line.



Sentence Embeddings

https://prakhartechviz.blogspot.com/2019/05/baseline-sentence-embeddings.html



•  Each sentence or document can be regarded as a sequence of vectors. 
 

Sequence of Words

I  hate  this  movie This  is  my  favorite  movie.

4 by d 5 by d

•  The shape of matrix depends on the length of sequence. However, the majority of ML  systems 
need fixed-length feature vectors.

• One simple solution: average the sequence of vectors, just like bag-of-words (abandon order 
information).
 



Complex Semantic

1. Input Text: a sequence of words;

2. Through Word Embedding Look-up: 
a sequence of word vectors;

3. Neural networks is applied upon the vector 
sequences to learn semantic composition for 
final prediction;

➔  Human understand the word meaning 
firstly, then get the whole sentence 
meaning by composing these words’ 
meaning together. 

Word 
embeddings

Word Embeddings is the foundation for deep learning’s 
applications on NLP

1 RNN
2 CNN
3 Attention
etc



Recurrent Neural Network for NLP

U, W, V:    RNN’s parameters
H:             Hidden Outputs
X:             Word Embeddings
y:             Labels



What is Word2Vec? 



https://ronxin.github.io/wevi/

A Good Visualization for Word2Vec

https://ronxin.github.io/wevi/


•  A method of computing vector representation of words developed by Google.
 

•  Open-source version of Word2Vec hosted by Google (in C)

•  Train a simple neural network with a single hidden layer to perform word prediction 
tasks 
                           

•  Two structures proposed Continuous Bag of Words (cbow) vs skip-gram:

Word2Vec



Word2Vec as BlackBox

Corpus Word2Vec Tool Word Embeddings

input, output



•  Given a training corpus, we prepare a list of N (input_word, output_word).  

•  Objective Function: Maximize probability of all the output words given the 
corresponding input words. 

Target 

Neural network 
parameters that will 
be optimized



Model Architecture

From Xin Rong 2016

Vocab size Vocab sizeembedding size
hyperparameters



• linear-activation function here

• 5 neurons are the word vec. dimensions
 

• This layer is operating as a ‘lookup’ table

• Input word matrix denoted as IVec

Hidden Layer
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5  neurons
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5  features

Hidden Layer Weights 
Matrix

Word Vector Look Up 
Table

[0,0,1,0,0,0,0, 0]

Index of eat

One-hot vector 

0.96，1.5， 1.37， 0.34，1.04

Word vector for “eat”

This is a projection/look up process: given the index of the word, we take 
the ith row in the word vector matrix out 



• Softmax classifier

• Output word matrix denoted as 
OVec
 

Output Layer

Word vector for “eat”

Output Layer Weights

Output Layer Weights Matrix 
A.K.A Output word vectors 

5 
 n

eu
ro

ns
/fe

at
ur

es

1 by 5

5 by 8

Scores over 8 words

p(word|”eat”)



• Softmax classifier

• Output word matrix denoted as 
OVec
 

Output Layer

Word vector for “eat”

Output weights for “apple”

Probability that if you 
randomly pick a word 
nearby “eat”, that it is 
“apple”

p(apple|eat) 

e^(IVec[eat]*OVec[apple])

e^(IVec[eat]*OVec[apple]) + e^(IVec[eat]*OVec[juice]) + e^(IVec[eat]*OVec[drink])+e^(IVec[eat]*OVec[other vocab words)

Output Layer Weights Matrix 
A.K.A Output word vectors 
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Word2Vec Network 
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Then, we can 
compute the loss 
and call gradient 
descent to update 
model parameters. 



From Xin Rong 2016

Updating Word Vectors



A force-directed graph

equilibrium length is ?



•  Feature vector assigned to a word will be adjusted if it can not be used for accurate 
prediction of that word’s context.
 

•  Each word’s context in the corpus is the teacher sending error signals back to modify  
the feature vector.

•  It means that words with similar context will be assigned similar vectors!        
                   

Distributional Semantics 

Idea behind Word2Vec



•  Inputs: semantics encoder from one-hot/word index to semantics 
 

•  Outputs: semantics decoder from semantics to probability distributions over words.

•  In most cases, input word vectors are used. Some have observed that 
combinations of these two vectors may perform better.      
                   

Input vs Output Word Vectors 

Garten, 2014



•  How to select them from corpus
 

•  Skip-gram and CBoW differ here.

Input and Output Words

Corpus

Vocab 
Builder

Context 
Builder

Vocab

Input and 
Output 
Words 
Pair

Neural Network



• Task Definition: given a specific word, predict its nearby word (probability output)
 

•  Model input: source word, Model output: nearby word

•  Input is one word, output is one word

•  The output can be interpreted as prob. scores, which are regarded as how likely it is find  
each vocabulary word can be nearby your input word.   

Skip-Gram

give a talk at the

Input x
talk
talk
talk
talk

Target y
give
a
at
the



• Task Definition: given context, predict its target word
 

• Model input: context (several words), Model output: center word

•  Input is several words, output is one word

• Core Trick: average these context vectors for prob score computing

CBoW

give a talk at the
Input x
(give,a,at,the)

Target y
talk



• CBoW: learning to predict the word by the context

• Skip-gram: learning to predict the context by the center word

• CBoW: several times faster to train the skip-gram

• Skip-gram: works well with small amount of the training data, represents 
well even rare words or phrases.

Skip-Gram Vs CBoW



• In count-based or predict-based methods, context has a large effect.

• Small context window: more syntax-based embeddings

• Large context window: more semantics-based, topical embeddings

• Engineering practice: window size is randomly sampled between 1 and maximum 
window size

Context Selection



• Vocab size is huge

• The Sum of operation in softmax layer is very expensive, i.e., O(v). 

• Two solutions: Hierarchical softmax and negative sampling 

Huge Number of Parameters

e^(IVec[eat]*OVec[apple]) + e^(IVec[eat]*OVec[juice]) + e^(IVec[eat]*OVec[drink])+e^(IVec[eat]*OVec[other vocab words)



NN-based vs Matrix-based

what is important for word embeddings is that how to select 
hyperparameters and the utilization of appropriate pre-processing and 
post-processing steps.



Is word2vec good enough?

Corpus
Word2Vec Tool

Word Embeddings used for 
downstream tasks

• Can not capture different senses of words (context independent)
○ Solution: Take the word order into account    

• Can not address Out-of-Vocabulary words
○ Solution: Use characters or subwords   

https://ai.googleblog.com/2018/11/open-sour
cing-bert-state-of-art-pre.html

BERT 
Model

1 use transformer to 
capture word order
2 input is subwords and 
output is subwords 
embeddings

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html


Graph Embedding



• Graph is an ordered pair G=(V, E). 

• V is the set of nodes 

• E is the collection of pairs of nodes which are called 
edges

Graph Data



Graph Are Everywhere

Fraud DetectionLogistics and Transportation

Social Network Analysis

Recommendation System



• Based on your tasks, define your nodes and Edges

• Apply graph mining algorithms:
○ Graph Pattern Mining
○ Graph Classification
○ Graph Compression
○ Graph Clustering
○ Etc

Graph Data



• Embeddings can be extended beyond NLP domain

• Embeddings can be learned for any nodes in a graph

• Nodes can be items, web pages and so on in user clicked stream data

• Embeddings can be learned for any group of discrete and co-occurring states.

Embedding for Graph Data


