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1. Data preprocessing 

Data preprocessing process is the first and critical step to create a Machine Learning model. The data 
preprocessing step involves importing training and testing data from a csv file and some basic data 
cleaning processes which increase the accuracy and efficiency of a machine learning model.   Given 
the dataset are user’s reviews so that contains unstructured, noise data and unusable format which 
cannot be directly used for machine learning models. Therefore to minimize the unstructured data, 
clean all the data with the following step by step procedure.  

● Data contains html entities such as <html> <header> </head></html> that are removed by 
using regular expression. 

● Removed Stopword because Stopwords considered as low information or non critical 
information in the text classification.  

● To improve model accuracy, remove extra noises such as hyperlink, special character, 
numeric and single character by using regular expression. 

● As the given data sets are user’s reviews from the internet so that difference people can use 
different ways of writing for the same meaning. To reduce different forms of word to core 
meaning, I decided to use lemmatization because lemmatization is more accurate and 
intelligent than stemming. Lemmatization changes the word to its meaningful base form, 
whereas stemming just removes some characters that may cause the incorrect meanings. 

1.1 Feature Engineering 

The second step is a feature engineering step that transforms raw text data into numerical structure. 
There are a lot of feature engineering techniques such as Count Vector (Vectorization), n-grams, TF - 
IDF, Cosine Similarity, Jaccard Similarity, Levenshtein Distance, Feature Hashing and so on. Among 
them I decided to use CountVector, TF - IDF and n-grams as features. 

By using the CountVectorizer function, it tokenizes the text document and converts it into a matrix 
of word frequency count that is used as weight. The structure of the CountVector matrix is that all 
the rows represent the row of the dataset, all the columns represent a term of the dataset and every 
cell represents the frequency count of each term in the dataset. For parameter tuning, I decided to 
use word level or 1-gram in the CountVercor feature because in the given dataset contain more 
individual words rather than the combined word.  

TF-IDF (Term Frequency-Inverse Document Frequency) can provide important words or terms from 
the dataset. The formula of TF and IDF as following: 

● TF - No of terms that appear in the documents / Total no of terms in the documents 
● IDF -  Log (total no of documents / no of documents with the term in it) 
● TF-IDF - TF * IDF 

For the TF-IDF feature,  I generated two different levels  such as TF-IDF with word level and TF-IDF 
with word level by using N-gram (2-3 range). The parameter for max_fetaures set as 5,000 that is 
neither too large nor too small and that can perform reasonably well. For max_df parameter, it was 
set by 0.8 which means that if the terms appear in more than 80% of the document that will be 
ignored. And the integer value 5 sets for the min_df which mean that it will ignore terms appear in 
less than 5 documents in the dataset. 

 

2. Model Validation 

There are many techniques to validate the accuracy of the model predictions. Among them I used 
the cross Validation technique that enables us to estimate whether our model got the correct 



pattern or not. In the cross validation technique I decided to use the Validation method and K-Fold 
Cross Validation Method for this assignment. 

Validation method: To validate the model prediction, split the data into two portions as training 
dataset (70%) and testing dataset (30%). The 70% training dataset is used to train the model then 
the 30% testing dataset is to test the model performance and accuracy. This method may have some 
bias on splitting so that I decided to use another validation method called K-Fold Cross Validation 
method. 

K-Fold Cross Validation Method: For the K-Fold Cross Validation, I split the given dataset into 2 
subset or 2 folds (K fold). We need to iterate 2 times with different subsets and each time 1 subset 
(K-1 fold) becomes the training data and the remaining reserved subset becomes the testing data. So 
that by using the K-Fold cross validation method all data were used for both testing and training 
data. 

 

3. Model Building 

In this step I will choose the classification algorithm and train the machine learning model by using 
clean datasets and features that were created in the previous step 1. There are various choices of 
machine learning models to estimate accuracy, among them I chose the following algorithms to 
apply in this assignment. 

Naive Bayes Classifier: This algorithm is simple to implement and the results are good in most cases 
especially for very large dataset. It performs well not only in binary class prediction but also multi 
class prediction.  Moreover its processing time is faster than the other algorithm. 

Linear Classifier (Logistic Regression):  It is easy and quick to implement and it does not require 
many computational resources. 

Support Vector Machine: it is very effective in high dimensional space especially for text dataset. It 
is more suitable with binary classification and works well in unstructured data and semi-structured 
data.  

Random Forest Classifier (Bagging): Random Forest Classifier uses Ensemble Learning technique and 
based on bagging algorithm. It takes more time to train rather than other models. Random Forest 
reduces the overfitting problem so that it improves the accuracy of the model. 

Xtereme Gradient Boosting Classifier (Boosting): Boosting that reduces variance & bias and that 
help to convert weak learners to strong learners. There are many types of boosting algorithms such 
as Gradient Booting, Adaptive Boosting, Catboostclassifier, and Extreme Gradient Boosting and so 
on. I chose the Extreme Gradient Boosting because it is simple and effective. It also delivers high 
performance and accuracy. 

3.1 Select Best Model 

Finally each model predicted the accuracy of the data, among them the SVM model with WordLevvel 
TFIDF feature got the highest accuracy (70%) and considered quite good. So I decided to select and 
submit to the Kaggle competition. For the accuracy result comparison chart and table, please refer 
to the appendix section. 



4. Appendix 

 

 

Figure-1: Comparison between the accuracy of the model by using Validation 
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Figure-2: Comparison between the accuracy of the model by using K-fold 1st Iteration 
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Figure-3: Comparison between the accuracy of the model by using K-fold 2st Iteration 
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Validation 
method 

K-Fold 

1-Fold 2-Fold 

Naive Bayes (Count Vectors) 0.64 0.55 0.59 

Naive Bayes (WordLevel TF-IDF) 0.66 0.56 0.60 

Naive Bayes (N-Gram Vectors) 0.62 0.51 0.53 

  

Logistic Regression (Count Vectors) 0.66 0.55 0.56 

Logistic Regression (WordLevel TF-IDF) 0.69 0.57 0.62 

Logistic Regression (N-Gram Vectors) 0.64 0.53 0.54 

  

SVN (Count Vectors) 0.67 0.57 0.61 

SVN (WordLevel TF-IDF) 0.70 0.57 0.61 

SVN (N-Gram Vectors) 0.64 0.54 0.53 

  

Random Forest Classifier (Count Vectors) 0.68 0.59 0.62 

Random Forest Classifier (WordLevel TF-IDF) 0.68 0.59 0.64 

Random Forest Classifier (N-Gram Vectors) 0.62 0.54 0.54 

  

XG Boosting (Count Vectors) 0.64 0.58 0.62 

XG Boosting (WordLevel TF-IDF) 0.65 0.59 0.62 

XG Boosting (N-Gram Vectors) 0.56 0.52 0.50 

 

Table-1: Comparison between the accuracy of the model 

 

PS: The green color cell is selected for Kaggle submission. 

 

 

=== END === 


